bzoj1004题解
【题意分析】
给N个元素染色,可以在定置换群的作用下互相转化的染色方案算相同的,问本质不同的染色方案数。
【解题思路】
引理:Burnside定理
设集合S=[1,n]∩N,记等价类数为L,给定S上的置换群G。
Zk (k不动置换类):若k是S中某个元素,G中使k保持不变的置换的全体,记以Zk,叫做G中使k保持不动的置换类,简称k不动置换类。
C(π)(置换n的不动点全集):对于一个置换π∈G,及a∈X,若π(a)=a,则称a为π的不动点。π的不动点的全体记为C(π)。
有定理:L=1/|G|*∑|Zk|(k∈S)=1/|G|*Σ|C(n)|(n∈G)。
所以,我们只要分别计算G中每个置换的不动点数,就可以计算出等价类数。外层复杂度O(m)。
考虑染色,对于每个置换,在同一个置换环中的元素必定染成同色,才能保证集合range(n)经过置换后染色方案不变,所以可以用三维背包来计算方案数。内层复杂度O(SrSgSb+n)。
总复杂度O(n^2+nSrSgSb)。
【参考代码】
#include <cmath>
#include <cstdio>
#define REP(I,start,end) for(int I=(start);I<=(end);I++)
#define PER(I,start,end) for(int I=(start);I>=(end);I--)
#define REPs(I,start,end,step) for(int I=(start);I<=(end);I+=(step))
#define PERs(I,start,end,step) for(int I=(start);I>=(end);I-=(step))
using namespace std;
typedef unsigned short US;
typedef unsigned long UL;
typedef long long LL;
typedef unsigned long long ULL;
inline int getint()
{
char ch=getchar();
while((ch<''||ch>'')&&ch!='-')
ch=getchar();
int result=0;
bool impositive=ch=='-';
if(impositive)
ch=getchar();
while(ch>=''&&ch<='')
{
result=(result<<3)+(result<<1)+ch-'';
ch=getchar();
}
return impositive?-result:result;
}
inline int putint(int n)
{
int result=1;
char* sav=new char[20];
bool impositive=n<0;
if(impositive)
{
putchar('-');
n=-n;
}
sav[0]=n%10+'';
while(n/=10)
sav[result++]=n%10+'';
PER(i,result-1,0)
putchar(sav[i]);
delete []sav;
return result+impositive;
}
inline LL getLL()
{
char ch=getchar();
while((ch<''||ch>'')&&ch!='-')
ch=getchar();
LL result=0ll;
bool impositive=ch=='-';
if(impositive)
ch=getchar();
while(ch>=''&&ch<='')
{
result=(result<<3)+(result<<1)+ch-'';
ch=getchar();
}
return impositive?-result:result;
}
inline int putLL(LL n)
{
int result=1;
char* sav=new char[20];
bool impositive=n<0;
if(impositive)
{
putchar('-');
n=-n;
}
sav[0]=n%10+'';
while(n/=10)
sav[result++]=n%10+'';
PER(i,result-1,0)
putchar(sav[i]);
delete []sav;
return result+impositive;
}
template<typename integer> inline int read_int(integer &n)
{
char ch=getchar();
while((ch<''||ch>'')&&ch!='-')
ch=getchar();
int result=n=integer(0);
bool impositive=ch=='-';
if(impositive)
ch=getchar();
while(ch>=''&&ch<='')
{
n=(n<<3)+(n<<1)+integer(ch-'');
result++;
ch=getchar();
}
if(impositive)
{
n=-n;
result++;
}
return result;
}
template<typename integer> inline int write_int(integer n)
{
int result=1;
char* sav=new char[20];
bool impositive=n<0;
if(impositive)
{
putchar('-');
n=-n;
}
sav[0]=n%10+'';
while(n/=10)
sav[result++]=n%10+'';
PER(i,result-1,0)
putchar(sav[i]);
delete []sav;
return result+impositive;
}
template<typename integer> inline integer sqr(integer n)
{
return n*n;
}
template<typename base_type,typename exp_type> inline base_type PowerMod(base_type Base,exp_type Exp,base_type Mod)
{
bool* sav=new bool[int(log(Exp)/log(2))+1];
int tot=0;
base_type result=base_type(1),baser=Base%Mod;
exp_type tmp=Exp;
while(tmp)
{
sav[tot++]=tmp&1;
tmp>>=1;
}
while(tot)
{
result=sqr(result)%Mod;
if(sav[--tot])
result=result*baser%Mod;
}
delete []sav;
return result;
}
//====================================Header Template===================================
#include <cstring>
bool used[100];
int sr,sb,sg,n,p,trans[100],cnt[100],f[30][30][30];
inline int mod_reverse(int _n,int _p)
{
return PowerMod(_n,_p-2,_p);
}
inline int DP()
{
memset(f,0,sizeof(f));
memset(used,0,sizeof(used));
int group=0;
REP(i,1,n)
if(!used[i])
{
used[i]=true;
int j=trans[i],tot=1;
while(!used[j])
{
used[j]=true;
tot++;
j=trans[j];
}
cnt[++group]=tot;
}
f[0][0][0]=1;
REP(g,1,group)
PER(i,sr,0)
PER(j,sb,0)
PER(k,sg,0)
{
if(i>=cnt[g])
(f[i][j][k]+=f[i-cnt[g]][j][k])%=p;
if(j>=cnt[g])
(f[i][j][k]+=f[i][j-cnt[g]][k])%=p;
if(k>=cnt[g])
(f[i][j][k]+=f[i][j][k-cnt[g]])%=p;
}
return f[sr][sb][sg];
}
int main()
{
sr=getint();
sb=getint();
sg=getint();
int m=getint();
p=getint();
n=sr+sb+sg;
int ans=0;
REP(i,1,m)
{
REP(j,1,n)
trans[j]=getint();
(ans+=DP())%=p;
}
REP(i,1,n)
trans[i]=i;
(ans+=DP())%=p;
putint(ans*mod_reverse(m+1,p)%p);
return 0;
}
bzoj1004题解的更多相关文章
- BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】
题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...
- [题解]BZOJ1004 序列函数
原题找不到了,应该是usaco之类的题目吧.给一个可以交题的链接:http://www.cqoi.net:2012/problem.php?id=1004 思路:将素数一个一个往里乘,保证扫描的顺序是 ...
- 【bzoj1004】 HNOI2008—Cards
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 (题目链接) 题意 n张卡片,染成3种颜色,每种颜色只能染固定张数.给出一些洗牌方案,问染色方 ...
- 【BZOJ1004】Cards(组合数学,Burnside引理)
[BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Su ...
- 【BZOJ1004】[HNOI2008]Cards Burnside引理
[BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...
- bzoj1004 [HNOI2008]Cards 置换群+背包
[bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
随机推荐
- 【sql】leetcode习题 (共 42 题)
[175]Combine Two Tables (2018年11月23日,开始集中review基础) Table: Person +-------------+---------+ | Column ...
- 使用navigator.userAgent来判断浏览器类型
var br=navigator.userAgent.toLowerCase(); var browserVer=(br.match(/.+(?:rv|it|ra|ie)[\/: ]([\d.]+)/ ...
- leetcode-163周赛-1261-在污染的二叉树中查找元素
题目描述: 方法一: class FindElements: def __init__(self, root: TreeNode): self.d = set() def f(r, x): if r: ...
- NOIP2019模拟2019.9.20】膜拜大会(外向树容斥,分类讨论)
传送门. 题解: 我果然是不擅长分类讨论,心态被搞崩了. 注意到\(m<=n-2\),意味着除了1以外的位置不可能被加到a[1]两遍. 先考虑个大概: 考虑若存在\(x,x-1,-,2\)(有序 ...
- 基础(一):SCSI硬盘与IDE硬盘有什么区别
硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据.不同的硬盘接口决定着硬盘与计算机之间的连接速度,在整个系统中,硬盘接口的优劣直接影响着程序运行快慢和系统性能好坏.从整体的 ...
- windows API 创建系统托盘图标
系统托盘在我们使用的程序中很普遍,下面我们来看一个很不错的例子,使用Win32 API实现,对理解系统托盘有些帮助. [cpp] view plaincopy #include <windows ...
- 红黑数之原理分析及C语言实现
目录: 1.红黑树简介(概念,特征,用途) 2.红黑树的C语言实现(树形结构,添加,旋转) 3.部分面试题() 1.红黑树简介 1.1 红黑树概念 红黑树(Red-Black Tree,简称R-B T ...
- FastJson乱序问题
1.初始化为有序json对象 JSONObject jsonOrdered= new JSONObject(true); 2.将String对象转换过程中,不要调整顺序 JSONObject json ...
- pycharm中evaluate expression的用法
pycharm中evaluate expression的用法 首先要用debug调试模式运行程序,在代码编辑处右键debug,或着选择右上角的小虫子图标点击. 然后保证整个程序运行的时候可以中断,然后 ...
- Pandas分类数据和顺序数据转换为标志变量
#导入pandas库 import pandas as pd #OneHotEncoder用来将数值型类别变量转换为0-1的标志性变量 #LabelEncoder用来将字符串型变量转换为数值型变量 f ...