[SDOI2012] 任务安排 题解
有感而发,遂书。
其实和sze聊了很久,但他还是退役了。恐怕他是本届里学oi时间最长的一个人吧,从小学五年级开始。我也是因为他,才开始学oi的。他因为学校的压力,不得不放弃。或许是没什么天赋。学了4年也才一个pj2=,我也才学了半年多,就是省一。只是感叹罢了。在提高机房里,我是最小的。在普及机房里我是最大的。事实上,我又何尝不羡慕呢,也许,我再早一点,只要早半年,我就可以初三进省队。或许,这是对我挥霍初二一年时光的惩罚吧。
时光荏苒,你我不再是少年。
题意分析
我们很简单的有一个dp的造作,事实上是可以过掉第一题的
定义 \(f_i\)表示完成\(1\)至\(i\)任务所需的最少花费。
所求 \(f_n\)即为所求
为了书写方便。我们做一个前缀和 定义 c,t就像题面所说的
dp转移方程
\[
f[i]=min_{0 \le j < i}\{ f[j]+s*(c[n]-c[j])+t[i]*(c[i]-c[j])\}
\]
轻轻一跃跳入坑中
我们这里用了一种想法,就是把后面任务的启动时间算到这一次,这样就不用统计他的记录分了几批任务的状态。
运用这个dp的转移是\(O(n^2)\)的,可以过掉第一题,但是第二题还差优化。
观察了第二题。由于是一维dp自然想到了决策的单调性。推了一下大概是满足的。于是我想到了斜率优化。。。。从此跳入了坑
我们把上面的dp方程做展开有:
\[
f[j]=(t[i]+s)*c[j]+(-t[i]*c[i]+f[i]-s*c[n])
\]
我们知道,如果能斜率优化dp方程必定能变为\(y=kx+b\) 的形式
其中y=只关于j的函数,x=只关于j的函数,k=只关于i的函数,b=只关于i的函数,k和x不严格单调递增。
我们的每个点就为\((c[j],f[j])\),此时,这不就是斜率优化的板子吗?开心的打上去。0pts滚粗
于是我们观察数据范围 \(|t_i| \le 2^8\)..有负的,所以我们不能维护单调队列。但是dp的决策是单调的!
那就再跳出来
那就用一个单调栈。
我们的单调队列维护了一个下图
然而k不是单增的,显然的,上凸点依然不可能成为决策点。所以我们要维护的就是一个下凸包就如下图:
再找最优决策点是可以二分来找
可以用单调栈来维护
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std;
typedef long long ll;
typedef double db;
const int Maxn=3*1e5+11;
ll n,s,c[Maxn],t[Maxn],q[Maxn],tail,head;
ll f[Maxn];
ll read(){
ll x=0;
bool f=0;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-') f=1;
ch=getchar();
}
while(ch<='9'&&ch>='0'){
x=(x<<1)+(x<<3)+(ch-'0');
ch=getchar();
}
if(f) return -x;
return x;
}
ll search(ll head,ll tail,ll k){
if(head==tail) return q[head];
ll ans;
while(head<=tail){
ll mid=(head+tail)>>1;
if((f[q[mid+1]]-f[q[mid]])>(ll)k*(c[q[mid+1]]-c[q[mid]])){
// 维护下凸壳去第一个 slope(mid,mid+1)>k,因为下凸壳k单增
tail=mid-1;
ans=mid;
}
else head=mid+1;
}
return q[ans];
}
int main(){
freopen("SDOItask.in","r",stdin);
n=read();s=read();
for(int i=1;i<=n;i++) t[i]=t[i-1]+read(),c[i]=c[i-1]+read();
tail=1;head=1;
for(int i=1;i<=n;i++){
ll p=search(head,tail,s+t[i]);
f[i]=f[p]+t[i]*(c[i]-c[p])+s*(c[n]-c[p]);
while(head<tail&&(f[i]-f[q[tail]])*(ll)(c[q[tail]]-c[q[tail-1]])<=(f[q[tail]]-f[q[tail-1]])*(ll)(c[i]-c[q[tail]])) tail--;
q[++tail]=i;
}
printf("%lld",f[n]);
return 0;
}
嵬
讲真的,我不会线段树。。。
[SDOI2012] 任务安排 题解的更多相关文章
- 【BZOJ2726】[SDOI2012]任务安排 斜率优化+cdq分治
[BZOJ2726][SDOI2012]任务安排 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若 ...
- [BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)
2726: [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1580 Solved: 466[Submit][Statu ...
- BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )
考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N) F, T均为后缀和. 与j有关 ...
- [bzoj P2726] [SDOI2012]任务安排
[bzoj P2726] [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1204 Solved: 349[Submit] ...
- BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]
2726: [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 868 Solved: 236[Submit][Status ...
- BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分
BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...
- 笔记-[SDOI2012]任务安排
笔记-[SDOI2012]任务安排 [SDOI2012]任务安排 \(f_i\) 表示分配到第 \(i\) 个任务的最小费用. 令 \(st_i=\sum_{h=1}^iT_h\),\(sc_i=\s ...
- [SDOI2012]任务安排 BZOJ2726 斜率优化+二分查找
网上的题解...状态就没有一个和我一样的...这让我有些无从下手... 分析: 我们考虑,正常的斜率优化满足x(i)单调递增,k(i)单调递增,那么我们就可以只用维护一个单调队列满足对于当前的x(i) ...
- BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp
题解 转移方程与我的上一篇题解一样 : $S\times sumC_j + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...
随机推荐
- 基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集 下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...
- ARTS Week 1
Oct 28,2019 ~ Nov 3,2019 Algorithm 本周的学习的算法是二分法.二分法可以用作查找即二分查找,也可以用作求解一个非负数的平方根等.下面主要以二分查找为例. 为了后续描述 ...
- BZOJ 3339 Rmq Problem(离线+线段树+mex函数)
题意: q次询问,问[l,r]子区间的mex值 思路: 对子区间[l,r],当l固定的时候,[l,r]的mex值对r单调不减 对询问按照l离线,对当前的l,都有维护一个线段树,每个叶节点保存[l,r] ...
- Loj 6002 最小路径覆盖(最大流)
题意: 求不相交的最小路径覆盖 思路: 连边跑二分图,匹配一条边相当于缩了一条边,答案为n-maxflow 如果是求可以相交的最小路径覆盖的话,先用Floyd跑出可达矩阵,然后所有可达的点连边跑二分图 ...
- Go语言实现:【剑指offer】二叉树中和为某一值的路径
该题目来源于牛客网<剑指offer>专题. 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路 ...
- 【题解】P1020 导弹拦截
[题解]P1020 导弹拦截 从n^2到nlogn 第二问就是贪心,不多说 第一问: 简化题意:求最长不下降子序列 普通n^2: for (int i = 1; i <= n; i++) for ...
- dubbo-admin dubbo-monitor 安装
dubbo-admin: 因为我们不能直观的看到dubbo和zk上到底有什么服务(提供者),所以我们需要一个可视化工具来方便我们管理每一个服务和每一个节点.dubbo-admin 就是dubbo的管理 ...
- GPU 版 TensorFlow failed to create cublas handle: CUBLAS_STATUS_ALLOC_FAILED
原因: 使用 GPU 版 TensorFlow ,并且在显卡高占用率的情况下(比如玩游戏)训练模型,要注意在初始化 Session 的时候为其分配固定数量的显存,否则可能会在开始训练的时候直接报错退出 ...
- centos7安装bind(DNS服务)
环境介绍 公网IP:149.129.92.239 内网IP:172.17.56.249 系统:CentOS 7.4 一.安装 yum install bind bind-utils -y 二.修改bi ...
- Python 调用 Shell命令
python程序中调用shell命令,是件很酷且常用的事情今天来总结一下 1.使用os模块 的 system 此函数会启动子进程,在子进程中执行command,并返回comman ...