使用mapreduce对日志进行清洗
网站日志分析项目案例(一)项目介绍:http://www.cnblogs.com/edisonchou/p/4449082.html
网站日志分析项目案例(二)数据清洗:当前页面
网站日志分析项目案例(三)统计分析:http://www.cnblogs.com/edisonchou/p/4464349.html
一、数据情况分析
1.1 数据情况回顾
该论坛数据有两部分:
(1)历史数据约56GB,统计到2012-05-29。这也说明,在2012-05-29之前,日志文件都在一个文件里边,采用了追加写入的方式。
(2)自2013-05-30起,每天生成一个数据文件,约150MB左右。这也说明,从2013-05-30之后,日志文件不再是在一个文件里边。
图1展示了该日志数据的记录格式,其中每行记录有5部分组成:访问者IP、访问时间、访问资源、访问状态(HTTP状态码)、本次访问流量。
图1 日志记录数据格式
本次使用数据来自于两个2013年的日志文件,分别为access_2013_05_30.log与access_2013_05_31.log,下载地址为:http://pan.baidu.com/s/1pJE7XR9
1.2 要清理的数据
(1)根据前一篇的关键指标的分析,我们所要统计分析的均不涉及到访问状态(HTTP状态码)以及本次访问的流量,于是我们首先可以将这两项记录清理掉;
(2)根据日志记录的数据格式,我们需要将日期格式转换为平常所见的普通格式如20150426这种,于是我们可以写一个类将日志记录的日期进行转换;
(3)由于静态资源的访问请求对我们的数据分析没有意义,于是我们可以将"GET /staticsource/"开头的访问记录过滤掉,又因为GET和POST字符串对我们也没有意义,因此也可以将其省略掉;
二、数据清洗过程
2.1 定期上传日志至HDFS
首先,把日志数据上传到HDFS中进行处理,可以分为以下几种情况:
(1)如果是日志服务器数据较小、压力较小,可以直接使用shell命令把数据上传到HDFS中;
(2)如果是日志服务器数据较大、压力较大,使用NFS在另一台服务器上上传数据;
(3)如果日志服务器非常多、数据量大,使用flume进行数据处理;
这里我们的实验数据文件较小,因此直接采用第一种Shell命令方式。又因为日志文件时每天产生的,因此需要设置一个定时任务,在第二天的1点钟自动将前一天产生的log文件上传到HDFS的指定目录中。所以,我们通过shell脚本结合crontab创建一个定时任务techbbs_core.sh,内容如下:
#!/bin/sh
#step1.get yesterday format string
yesterday=$(date --date='1 days ago' +%Y_%m_%d)
#step2.upload logs to hdfs
hadoop fs -put /usr/local/files/apache_logs/access_${yesterday}.log /project/techbbs/data
结合crontab设置为每天1点钟自动执行的定期任务:crontab -e,内容如下(其中1代表每天1:00,techbbs_core.sh为要执行的脚本文件):
* 1 * * * techbbs_core.sh
验证方式:通过命令 crontab -l 可以查看已经设置的定时任务
2.2 编写MapReduce程序清理日志
(1)编写日志解析类对每行记录的五个组成部分进行单独的解析
static class LogParser {
public static final SimpleDateFormat FORMAT = new SimpleDateFormat(
"d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH);
public static final SimpleDateFormat dateformat1 = new SimpleDateFormat(
"yyyyMMddHHmmss");/**
* 解析英文时间字符串
*
* @param string
* @return
* @throws ParseException
*/
private Date parseDateFormat(String string) {
Date parse = null;
try {
parse = FORMAT.parse(string);
} catch (ParseException e) {
e.printStackTrace();
}
return parse;
} /**
* 解析日志的行记录
*
* @param line
* @return 数组含有5个元素,分别是ip、时间、url、状态、流量
*/
public String[] parse(String line) {
String ip = parseIP(line);
String time = parseTime(line);
String url = parseURL(line);
String status = parseStatus(line);
String traffic = parseTraffic(line); return new String[] { ip, time, url, status, traffic };
} private String parseTraffic(String line) {
final String trim = line.substring(line.lastIndexOf("\"") + 1)
.trim();
String traffic = trim.split(" ")[1];
return traffic;
} private String parseStatus(String line) {
final String trim = line.substring(line.lastIndexOf("\"") + 1)
.trim();
String status = trim.split(" ")[0];
return status;
} private String parseURL(String line) {
final int first = line.indexOf("\"");
final int last = line.lastIndexOf("\"");
String url = line.substring(first + 1, last);
return url;
} private String parseTime(String line) {
final int first = line.indexOf("[");
final int last = line.indexOf("+0800]");
String time = line.substring(first + 1, last).trim();
Date date = parseDateFormat(time);
return dateformat1.format(date);
} private String parseIP(String line) {
String ip = line.split("- -")[0].trim();
return ip;
}
}
(2)编写MapReduce程序对指定日志文件的所有记录进行过滤
Mapper类:
static class MyMapper extends
Mapper<LongWritable, Text, LongWritable, Text> {
LogParser logParser = new LogParser();
Text outputValue = new Text(); protected void map(
LongWritable key,
Text value,
org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, LongWritable, Text>.Context context)
throws java.io.IOException, InterruptedException {
final String[] parsed = logParser.parse(value.toString()); // step1.过滤掉静态资源访问请求
if (parsed[2].startsWith("GET /static/")
|| parsed[2].startsWith("GET /uc_server")) {
return;
}
// step2.过滤掉开头的指定字符串
if (parsed[2].startsWith("GET /")) {
parsed[2] = parsed[2].substring("GET /".length());
} else if (parsed[2].startsWith("POST /")) {
parsed[2] = parsed[2].substring("POST /".length());
}
// step3.过滤掉结尾的特定字符串
if (parsed[2].endsWith(" HTTP/1.1")) {
parsed[2] = parsed[2].substring(0, parsed[2].length()
- " HTTP/1.1".length());
}
// step4.只写入前三个记录类型项
outputValue.set(parsed[0] + "\t" + parsed[1] + "\t" + parsed[2]);
context.write(key, outputValue);
}
}
Reducer类:
static class MyReducer extends
Reducer<LongWritable, Text, Text, NullWritable> {
protected void reduce(
LongWritable k2,
java.lang.Iterable<Text> v2s,
org.apache.hadoop.mapreduce.Reducer<LongWritable, Text, Text, NullWritable>.Context context)
throws java.io.IOException, InterruptedException {
for (Text v2 : v2s) {
context.write(v2, NullWritable.get());
}
};
}
(3)LogCleanJob.java的完整示例代码
package techbbs;
import java.net.URI;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class LogCleanJob extends Configured implements Tool {
public static void main(String[] args) {
Configuration conf = new Configuration();
try {
int res = ToolRunner.run(conf, new LogCleanJob(), args);
System.exit(res);
} catch (Exception e) {
e.printStackTrace();
}
}
@Override
public int run(String[] args) throws Exception {
final Job job = new Job(new Configuration(),
LogCleanJob.class.getSimpleName());
// 设置为可以打包运行
job.setJarByClass(LogCleanJob.class);
FileInputFormat.setInputPaths(job, args[0]);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(Text.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 清理已存在的输出文件
FileSystem fs = FileSystem.get(new URI(args[0]), getConf());
Path outPath = new Path(args[1]);
if (fs.exists(outPath)) {
fs.delete(outPath, true);
}
boolean success = job.waitForCompletion(true);
if(success){
System.out.println("Clean process success!");
}
else{
System.out.println("Clean process failed!");
}
return 0;
}
static class MyMapper extends
Mapper<LongWritable, Text, LongWritable, Text> {
LogParser logParser = new LogParser();
Text outputValue = new Text();
protected void map(
LongWritable key,
Text value,
org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, LongWritable, Text>.Context context)
throws java.io.IOException, InterruptedException {
final String[] parsed = logParser.parse(value.toString());
// step1.过滤掉静态资源访问请求
if (parsed[2].startsWith("GET /static/")
|| parsed[2].startsWith("GET /uc_server")) {
return;
}
// step2.过滤掉开头的指定字符串
if (parsed[2].startsWith("GET /")) {
parsed[2] = parsed[2].substring("GET /".length());
} else if (parsed[2].startsWith("POST /")) {
parsed[2] = parsed[2].substring("POST /".length());
}
// step3.过滤掉结尾的特定字符串
if (parsed[2].endsWith(" HTTP/1.1")) {
parsed[2] = parsed[2].substring(0, parsed[2].length()
- " HTTP/1.1".length());
}
// step4.只写入前三个记录类型项
outputValue.set(parsed[0] + "\t" + parsed[1] + "\t" + parsed[2]);
context.write(key, outputValue);
}
}
static class MyReducer extends
Reducer<LongWritable, Text, Text, NullWritable> {
protected void reduce(
LongWritable k2,
java.lang.Iterable<Text> v2s,
org.apache.hadoop.mapreduce.Reducer<LongWritable, Text, Text, NullWritable>.Context context)
throws java.io.IOException, InterruptedException {
for (Text v2 : v2s) {
context.write(v2, NullWritable.get());
}
};
}
/*
* 日志解析类
*/
static class LogParser {
public static final SimpleDateFormat FORMAT = new SimpleDateFormat(
"d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH);
public static final SimpleDateFormat dateformat1 = new SimpleDateFormat(
"yyyyMMddHHmmss");
public static void main(String[] args) throws ParseException {
final String S1 = "27.19.74.143 - - [30/May/2013:17:38:20 +0800] \"GET /static/image/common/faq.gif HTTP/1.1\" 200 1127";
LogParser parser = new LogParser();
final String[] array = parser.parse(S1);
System.out.println("样例数据: " + S1);
System.out.format(
"解析结果: ip=%s, time=%s, url=%s, status=%s, traffic=%s",
array[0], array[1], array[2], array[3], array[4]);
}
/**
* 解析英文时间字符串
*
* @param string
* @return
* @throws ParseException
*/
private Date parseDateFormat(String string) {
Date parse = null;
try {
parse = FORMAT.parse(string);
} catch (ParseException e) {
e.printStackTrace();
}
return parse;
}
/**
* 解析日志的行记录
*
* @param line
* @return 数组含有5个元素,分别是ip、时间、url、状态、流量
*/
public String[] parse(String line) {
String ip = parseIP(line);
String time = parseTime(line);
String url = parseURL(line);
String status = parseStatus(line);
String traffic = parseTraffic(line);
return new String[] { ip, time, url, status, traffic };
}
private String parseTraffic(String line) {
final String trim = line.substring(line.lastIndexOf("\"") + 1)
.trim();
String traffic = trim.split(" ")[1];
return traffic;
}
private String parseStatus(String line) {
final String trim = line.substring(line.lastIndexOf("\"") + 1)
.trim();
String status = trim.split(" ")[0];
return status;
}
private String parseURL(String line) {
final int first = line.indexOf("\"");
final int last = line.lastIndexOf("\"");
String url = line.substring(first + 1, last);
return url;
}
private String parseTime(String line) {
final int first = line.indexOf("[");
final int last = line.indexOf("+0800]");
String time = line.substring(first + 1, last).trim();
Date date = parseDateFormat(time);
return dateformat1.format(date);
}
private String parseIP(String line) {
String ip = line.split("- -")[0].trim();
return ip;
}
}
}
(4)导出jar包,并将其上传至Linux服务器指定目录中
2.3 定期清理日志至HDFS
这里我们改写刚刚的定时任务脚本,将自动执行清理的MapReduce程序加入脚本中,内容如下:
#!/bin/sh
#step1.get yesterday format string
yesterday=$(date --date='1 days ago' +%Y_%m_%d)
#step2.upload logs to hdfs
hadoop fs -put /usr/local/files/apache_logs/access_${yesterday}.log /project/techbbs/data
#step3.clean log data
hadoop jar /usr/local/files/apache_logs/mycleaner.jar /project/techbbs/data/access_${yesterday}.log /project/techbbs/cleaned/${yesterday}
这段脚本的意思就在于每天1点将日志文件上传到HDFS后,执行数据清理程序对已存入HDFS的日志文件进行过滤,并将过滤后的数据存入cleaned目录下。
2.4 定时任务测试
(1)因为两个日志文件是2013年的,因此这里将其名称改为2015年当天以及前一天的,以便这里能够测试通过。
(2)执行命令:techbbs_core.sh 2014_04_26
控制台的输出信息如下所示,可以看到过滤后的记录减少了很多:
15/04/26 04:27:20 INFO input.FileInputFormat: Total input paths to process : 1
15/04/26 04:27:20 INFO util.NativeCodeLoader: Loaded the native-hadoop library
15/04/26 04:27:20 WARN snappy.LoadSnappy: Snappy native library not loaded
15/04/26 04:27:22 INFO mapred.JobClient: Running job: job_201504260249_0002
15/04/26 04:27:23 INFO mapred.JobClient: map 0% reduce 0%
15/04/26 04:28:01 INFO mapred.JobClient: map 29% reduce 0%
15/04/26 04:28:07 INFO mapred.JobClient: map 42% reduce 0%
15/04/26 04:28:10 INFO mapred.JobClient: map 57% reduce 0%
15/04/26 04:28:13 INFO mapred.JobClient: map 74% reduce 0%
15/04/26 04:28:16 INFO mapred.JobClient: map 89% reduce 0%
15/04/26 04:28:19 INFO mapred.JobClient: map 100% reduce 0%
15/04/26 04:28:49 INFO mapred.JobClient: map 100% reduce 100%
15/04/26 04:28:50 INFO mapred.JobClient: Job complete: job_201504260249_0002
15/04/26 04:28:50 INFO mapred.JobClient: Counters: 29
15/04/26 04:28:50 INFO mapred.JobClient: Job Counters
15/04/26 04:28:50 INFO mapred.JobClient: Launched reduce tasks=1
15/04/26 04:28:50 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=58296
15/04/26 04:28:50 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
15/04/26 04:28:50 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
15/04/26 04:28:50 INFO mapred.JobClient: Launched map tasks=1
15/04/26 04:28:50 INFO mapred.JobClient: Data-local map tasks=1
15/04/26 04:28:50 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=25238
15/04/26 04:28:50 INFO mapred.JobClient: File Output Format Counters
15/04/26 04:28:50 INFO mapred.JobClient: Bytes Written=12794925
15/04/26 04:28:50 INFO mapred.JobClient: FileSystemCounters
15/04/26 04:28:50 INFO mapred.JobClient: FILE_BYTES_READ=14503530
15/04/26 04:28:50 INFO mapred.JobClient: HDFS_BYTES_READ=61084325
15/04/26 04:28:50 INFO mapred.JobClient: FILE_BYTES_WRITTEN=29111500
15/04/26 04:28:50 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=12794925
15/04/26 04:28:50 INFO mapred.JobClient: File Input Format Counters
15/04/26 04:28:50 INFO mapred.JobClient: Bytes Read=61084192
15/04/26 04:28:50 INFO mapred.JobClient: Map-Reduce Framework
15/04/26 04:28:50 INFO mapred.JobClient: Map output materialized bytes=14503530
15/04/26 04:28:50 INFO mapred.JobClient: Map input records=548160
15/04/26 04:28:50 INFO mapred.JobClient: Reduce shuffle bytes=14503530
15/04/26 04:28:50 INFO mapred.JobClient: Spilled Records=339714
15/04/26 04:28:50 INFO mapred.JobClient: Map output bytes=14158741
15/04/26 04:28:50 INFO mapred.JobClient: CPU time spent (ms)=21200
15/04/26 04:28:50 INFO mapred.JobClient: Total committed heap usage (bytes)=229003264
15/04/26 04:28:50 INFO mapred.JobClient: Combine input records=0
15/04/26 04:28:50 INFO mapred.JobClient: SPLIT_RAW_BYTES=133
15/04/26 04:28:50 INFO mapred.JobClient: Reduce input records=169857
15/04/26 04:28:50 INFO mapred.JobClient: Reduce input groups=169857
15/04/26 04:28:50 INFO mapred.JobClient: Combine output records=0
15/04/26 04:28:50 INFO mapred.JobClient: Physical memory (bytes) snapshot=154001408
15/04/26 04:28:50 INFO mapred.JobClient: Reduce output records=169857
15/04/26 04:28:50 INFO mapred.JobClient: Virtual memory (bytes) snapshot=689442816
15/04/26 04:28:50 INFO mapred.JobClient: Map output records=169857
Clean process success!
(3)通过Web接口查看HDFS中的日志数据:
存入的未过滤的日志数据:/project/techbbs/data/
存入的已过滤的日志数据:/project/techbbs/cleaned/
使用mapreduce对日志进行清洗的更多相关文章
- 【hadoop】1、MapReduce进行日志分析,并排序统计结果
1.网上很多关于搭建Hadoop集群的知识,这里不多做叙述,并且本机运行Hadoop程序是不需要hdfs集群的,我们本机运行只做个demo样式,当真的需要运行大数据的时候,才需要真正的集群 2.还有就 ...
- hadoop 中ALL Applications 中Tracking 下History查找不到MapReduce Job 日志
运行一个Map Reduce job 想查看日志: 点击History ,找不到网页 解决办法如下: 1.其中有一个进程是需要启动的: Hadoop自带了一个历史服务器,可以通过历史服务器查看已经运行 ...
- MapReduce 编程 系列七 MapReduce程序日志查看
首先,假设须要打印日志,不须要用log4j这些东西,直接用System.out.println就可以,这些输出到stdout的日志信息能够在jobtracker网站终于找到. 其次,假设在main函数 ...
- flume集群日志收集
一.Flume简介 Flume是一个分布式的.高可用的海量日志收集.聚合和传输日志收集系统,支持在日志系统中定制各类数据发送方(如:Kafka,HDFS等),便于收集数据.其核心为agent,agen ...
- hadoop日志数据分析开发步骤及代码
日志数据分析:1.背景1.1 hm论坛日志,数据分为两部分组成,原来是一个大文件,是56GB:以后每天生成一个文件,大约是150-200MB之间:1.2 日志格式是apache common日志格式: ...
- 大数据入门第九天——MapReduce详解(五)mapJoin、GroupingComparator与更多MR实例
一.数据倾斜分析——mapJoin 1.背景 接上一个day的Join算法,我们的解决join的方式是:在reduce端通过pid进行串接,这样的话: --order ,,P0001, ,,P0001 ...
- spark实战之网站日志分析
前面一篇应该算是比较详细的介绍了spark的基础知识,在了解了一些spark的知识之后相必大家对spark应该不算陌生了吧!如果你之前写过MapReduce,现在对spark也很熟悉的话我想你再也不想 ...
- mapReduce 大数据离线分析
数据分析一般分为两种,一种是在线一种是离线 流程: 一般都是对于日志文件的采集和分析 场景实例(某个电商网站产生的用户访问日志(access.log)进行离线处理与分析的过程) 1.需求: 基于Map ...
- 海量WEB日志分析
Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, ...
随机推荐
- 1.4 React 组件生命周期
1.4.1 组件 React 中组件有自己的生命周期方法,简单理解可以为组件从 出生(实例化) -> 激活 -> 销毁 生命周期 hook.通过这些 hook 方法可以自定义组件的特性. ...
- XML 扩展部分
引入命名空间 xmlns DTD缺点 1.不支持命名空间 2.支持的数据类型很少 3.DTD不可扩展 4.DTD不遵循XML规范 DTD的优点 简洁 schema 通过schema来解决DTD的不足 ...
- Flink DataStream API
Data Sources 源是程序读取输入数据的位置.可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 将源添加到程序.Flink 有 ...
- MySQL在win10以及linux下数据库的备份以及还原
MySQL在win环境或者linux下的命令都是一样的,只是路径不一致而已 MySQL的备份 (非必须)命令行进入MySQL的bin目录 输入命令:mysqldump -u userName -p d ...
- winfrom创建转圈等待窗体
第一步:创建一个WaitForm public partial class WaitForm : Form { ; private ArrayList images = new ArrayList() ...
- python--面向对象:封装
广义上面向对象的封装 :代码的保护,面向对象的思想本身就是一种只让自己的对象能调用自己类中的方法 狭义上的封装 ——> 面向对象的三大特性之一属性 和 方法都藏起来 不让你看见 "&q ...
- (Struts2学习系列三)Struts2动态方法调用:通配符方式
更改src/struts2.xml的代码: <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE ...
- AWS的lambda和S3之间如何连携
今天正好遇到了这个问题,就在官方文档里查询,然后根据他的说明整理了一下大致的流程,详细的请参考AWS国际版的官方文档,这里只是作者的一个简单的流程展示. Lambda和S3连接 1.在S3的同一区域当 ...
- Python自学:第四章 复制列表(1)
# -*- coding: GBK -*- my_foods = ['pizza', 'falafel', 'carrot cake'] friend_foods = my_foods[:] prin ...
- 【CSS】float
写在前面的话: 由于CSS内容比较多,小菜没有精力从头到尾讲一遍,只能有针对性的讲解. 如果读者理解CSS盒子模型,但对于浮动不理解,那么这篇文章可以帮助你. 小菜水平有限,本文仅仅是入门教程,不当之 ...