题意

http://codeforces.com/contest/1189/problem/D2


思考

显然地,如果出现度数为2且两条出边边权不相同的情况,是无法构造合法方案的。

下面考虑缩边后的树,此时每个非叶子节点的度数一定大于等于3。

枚举每个非叶子节点,将其重新作为树的根,并尝试将它所有的出边都达到要求。我们先找到它代表的所有叶子,分两种情况考虑:

1.一条边以下只有一个叶子。如下图所示,红色的路径代表+w/2,w为该边的边权,蓝色路径代表-w/2,能达到平衡。

2.一条边以下不止一个叶子。如下图所示,我们要求选定边的子树中挑出的两个叶子的lca的深度必须最大,否则无法消除影响。此处可以挑选dfn最大和最小的那两个。

总复杂度O(n^2)。注意特判一条链的情况。


代码

 #include<bits/stdc++.h>
using namespace std;
const int maxn=2E3+;
int n;
int deg[maxn*],hh[maxn];
int tot,haha;
bool dot[maxn];
vector<int>what[maxn];
vector<int>wait;
double w[maxn];
map<pair<int,int>,bool>vis;
inline pair<int,int>M(int x,int y)
{
if(x>y)
swap(x,y);
return make_pair(x,y);
}
struct edge
{
int to,next;
double w;
};
struct note
{
int x,y;
double d;
note(int a=,int b=,double c=)
{
x=a,y=b,d=c;
}
};
vector<note>ans;
struct graph
{
int head[maxn*],size;
edge E[maxn*];
inline void add(int u,int v,double w)
{
E[++size].to=v;
E[size].next=head[u];
E[size].w=w;
head[u]=size;
}
void get(int u,int F,int num)
{
for(int i=head[u];i;i=E[i].next)
{
int v=E[i].to;
if(v==F)
continue;
if(u==F)
{
w[++num]=E[i].w;
hh[num]=v;
get(v,u,num);
}
else
get(v,u,num);
}
if(deg[u]==)
what[num].push_back(u);
if(u==F)
for(int i=;i<=num;++i)
{
if(vis[M(u,hh[i])])
continue;
if(what[i].size()==)
{
int u1=what[i][];
int x=what[i+<=num?i+:i+-num][];
int y=what[i+<=num?i+:i+-num][];
double d=w[i]/;
ans.push_back(note(u1,x,d));
ans.push_back(note(u1,y,d));
ans.push_back(note(x,y,-d));
vis[M(u,hh[i])]=;
}
else
{
int u1=what[i][],u2=what[i][what[i].size()-];
int x=what[i+<=num?i+:i+-num][];
int y=what[i+<=num?i+:i+-num][];
double d=w[i]/;
ans.push_back(note(u1,x,d));
ans.push_back(note(u2,y,d));
ans.push_back(note(u1,u2,-d));
ans.push_back(note(x,y,-d));
vis[M(u,hh[i])]=;
}
}
}
void find(int u,int F,int last)
{
dot[u]=;
if(deg[u]!=)
{
haha=last;
wait.push_back(u);
return;
}
for(int i=head[u];i;i=E[i].next)
{
int v=E[i].to;
if(v==F)
continue;
if(last==)
{
find(v,u,E[i].w);
last=E[i].w;
}
else if(last==E[i].w)
find(v,u,E[i].w);
else
{
cout<<"NO"<<endl;
exit();
}
}
}
int sum;
void getsize(int u,int F)
{
++sum;
for(int i=head[u];i;i=E[i].next)
{
int v=E[i].to;
if(v==F)
continue;
getsize(v,u);
}
}
}source,G;
int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=;i<=n;++i)
{
int x,y;
double z;
cin>>x>>y>>z;
source.add(x,y,z);
source.add(y,x,z);
++deg[x],++deg[y];
}
int P1=,P2=;
for(int u=;u<=n;++u)
{
if(deg[u]==)
{
if(!dot[u])
{
source.find(u,u,);
wait.clear();
G.add(wait[],wait[],haha);
G.add(wait[],wait[],haha);
P1=wait[],P2=wait[];
}
continue;
}
for(int i=source.head[u];i;i=source.E[i].next)
{
int v=source.E[i].to;
haha=source.E[i].w;
if(deg[v]!=)
G.add(u,v,source.E[i].w);
}
}
cout<<"YES"<<endl;
G.getsize(P1,P1);
if(G.sum==)
{
cout<<<<endl;
cout<<P1<<" "<<P2<<" "<<haha<<endl;
return ;
}
for(int u=;u<=n;++u)
{
if(deg[u]==)
continue;
for(int i=;i<=n;++i)
what[i].clear();
G.get(u,u,);
}
int del=;
for(int i=;i<ans.size();++i)
if(abs(ans[i].d-)<=0.01)
++del;
cout<<ans.size()-del<<endl;
for(int i=;i<ans.size();++i)
if(abs(ans[i].d-)>0.01)
cout<<ans[i].x<<" "<<ans[i].y<<" "<<ans[i].d<<endl;
return ;
}

CF572_Div2_D2的更多相关文章

随机推荐

  1. 安装OpenSsh8.1+LibreSSL 3.0.2(ssh升级)

    zlib下载地址: http://www.zlib.net/ LibreSSL下载地址: https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/ OpenSSH下载 ...

  2. 菜鸟系列Fabric源码学习 — committer记账节点

    Fabric 1.4 源码分析 committer记账节点 本文档主要介绍committer记账节点如何初始化的以及committer记账节点的功能及其实现. 1. 简介 记账节点负责验证交易和提交账 ...

  3. leetcode.199二叉树的右视图

    给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值. 示例: 输入: [1,2,3,null,5,null,4]输出: [1, 3, 4]解释: 1 <-- ...

  4. Linux上查找最大文件的 3 种方法

    有时候我们在系统上安装了数十个应用程序,随着使用时间的推移,许多文件变得越来越大,从而导致磁盘空间越来越小.那么问题来了,如何找到系统上这些大文件,然后进行一番磁盘空间清理呢,这篇文章就此介绍几种查找 ...

  5. 大数据学习之路-Centos6安装python3.5

    Centos 6.8安装python3.5.2 因为学习所需,需要用到python3.x的环境,目前Linux系统默认的版本都是python2.x的,还有一些自带的工具需要用到python2.6版本, ...

  6. 「洛谷P1306」斐波那契公约数 解题报告

    P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很"简单"问题:第n项和第m项的最大公 ...

  7. Pandas 数据分析,高中体测练习

    分析体测成绩 需求: 体侧成绩转变成分数 开卷考试 excel完成可以 pandas读取excel代码中 完成 一个手输入 进一步,画图,分布,体重正常,肥胖,偏瘦比例,绘制饼图 男生跑步1000成绩 ...

  8. OBS Studio 完全开源免费录屏软件

    OBS是Open Broadcaster Software的简称,它是一款永久免费的直播软件.OBS直播软件相比XSplit,占用资源相对较少,对配置要求相对要低一点,相同点就是录制格式MP4,不用再 ...

  9. JVM之GC(一)

    Java较C而言,最大的区别在于内存管理.JVM设有无用内存空间自动回收复用机制,也就是我们所说的GC. 之前说过,栈是为线程.为函数的执行分配内存的地方,用完即“销毁”,这里留待以后做深入探讨:堆是 ...

  10. Magicodes.IE之Excel模板导出教材订购表

    说明 本教程主要说明如果使用Magicodes.IE.Excel完成教材订购表的Excel模板导出. 要点 本教程使用Magicodes.IE.Excel来完成Excel模板导出 需要通过创建Dto来 ...