题目链接: http://codeforces.com/contest/300/problem/C

本来是道不难的题目,还是自己的数学功底不扎实。

从该题又一次巩固了关于乘法逆的概念,在剩余系中,如果要做除法,如 a / b%n ,  此时应该计算 a * (b在n下的逆), 而不是直接计算 a / b

另外一点值得注意的是,如果 n 为一素数,那么 b 的逆就是 pow_mod(a, n-2, n). 模拟叫做费马小定理。

乘法逆真的很重要。务必牢记!!!

附AC代码:

 /*************************************************************************
> File Name: 300C.c
> Author: Stomach_ache
> Mail: 1179998621@qq.com
> Created Time: 2014年01月07日 星期二 17时32分26秒
************************************************************************/ #include<stdio.h>
#include<string.h>
#include<stdlib.h> #define mod 1000000007
typedef long long LL;
int a, b, n, c[], rfact[]; // c[] -> c(n, k).............rfack[] -> k在n下的逆 // x is good ?
int ok(int x) {
while (x > ) {
int tmp = x % ;
if (tmp != a && tmp != b)
return ;
x /= ;
} return ;
}
// quick mod
LL pow_mod(LL a, LL b, LL c) {
LL res = ;
while (b) {
if (b & )
res = (res * a) % c;
a = (a * a) % c;
b >>= ;
} return res % c;
} int main(void) {
while (~scanf("%d %d %d", &a, &b, &n)) {
int i, cur = a * n, d = b - a;
LL cnt = ok(cur);
c[] = ;
for (i = ; i <= n; i++) {
rfact[i] = pow_mod(i, mod-, mod);
c[i] = (LL)c[i - ] * (n - i + ) % mod;
c[i] = (LL)c[i] * rfact[i] % mod;
}
for (cur += d, i = ; i < n; i++, cur += d) {
if (ok(cur)) {
cnt += c[i];
cnt %= mod;
}
}
cnt = (cnt + ok(b * n)) % mod;
printf("%lld\n", cnt);
} return ;
}

Codeforces 300C的更多相关文章

  1. CodeForces 300C 最短路

    A Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Status Pr ...

  2. CodeForces 300C --数论

    A - A Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  3. CodeForces 300C Beautiful Numbers

    枚举,组合数,逆元. 枚举$a$用了$i$个,那么$b$就用了$n-i$个,这个时候和$sum=a*i+b*(n-i)$,判断$sum$是否满足条件,如果满足,那么答案加上$C(n,i)$. #inc ...

  4. Codeforces 300C Beautiful Numbers 【组合数】+【逆元】

    <题目链接> 题目大意: 给出a和b,如果一个数每一位都是a或b,那么我们称这个数为good,在good的基础上,如果这个数的每一位之和也是good,那么这个数是excellent.求长度 ...

  5. CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)

    C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  6. 【Codeforces 300C】Beautiful Numbers

    [链接] 我是链接,点我呀:) [题意] 让你找到长度为n的数字 这个数字只由a或者b组成 且这n个数码的和也是由a或者b组成的 求出满足这样要求的数字的个数 [题解] 枚举答案数字中b的个数为y,那 ...

  7. [CodeForces 300C Beautiful Numbers]组合计数

    题意:十进制的每一位仅由a和b组成的数是“X数”,求长度为n,各数位上的数的和是X数的X数的个数 思路:由于总的位数为n,每一位只能是a或b,令a有p个,则b有(n-p)个,如果 a*p+b*(n-p ...

  8. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  9. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

随机推荐

  1. STL 最大堆与最小堆

    在第一场CCCC选拔赛上,有一关于系统调度的水题.利用优先队列很容易AC. // 由于比赛时花费了不少时间研究如何定义priority_queue的比较函数,决心把STL熟练掌握... Queue 首 ...

  2. 学而有道--思维导图式总结(一):Nosql分类

    前言: 众所周知,学习是需要方法的.作为一名java程序员,我们需要学习无数的技能,然而我们的大脑并不买账,学习了一项知识,时间一久就会遗忘, 如何更好高效的回忆起曾经学习过的知识,是极其重要的. 有 ...

  3. [vagrant]vagrant centos静态ip设置

    vagrant 中使用的是public_network,而工作网络中,由于桥接了很多路由器,导致ip段位和本机的ip段位不在同一个局域网中 ifconfig之后的结果 [root@localhost ...

  4. Opencv Mat矩阵操作注意事项

    矩阵操作通常不会进行元素复制,应注意: Mat a=Mat(100,100,CV_32S); Mat b=Mat(100,100,CV_32S); b=a.col(8);//此时并未进行元素赋值,而只 ...

  5. java关键字一览表

  6. 机器学习二 逻辑回归作业、逻辑回归(Logistic Regression)

    机器学习二 逻辑回归作业   作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57 ...

  7. jeecms框架单点登录功能的实现

    单点登录的功能实现主要原理: 1: 在点击登录按钮的时候使用reponse.addCookie()方法向浏览器发送cookie: 2: 在前段拦截器中的request.getCookie()在接收到设 ...

  8. 使用内部Servlet转发JSP后页面的JS,CSS等资源引入问题的解决

    转载自:https://blog.csdn.net/weixin_44353336/article/details/90677792 问题原因 我们在进行web项目开发过程中,经常会在web页面引入一 ...

  9. Echarts在Vue中的使用

    1.使用 cnpm 或 npm 安装 Echarts cnpm方式 cnpm install echarts -S 或者 npm方式 npm install echarts --save 2.在项目文 ...

  10. JSP四大域对象与九大内置对象

    什么是内置对象? 在jsp开发中会频繁使用到一些对象,如 ServletContext.HttpSession.PageContext 等: 如果每次我们在jsp页面中需要使用这些对象都要自己亲自动手 ...