优选阶段通过分离计算对象来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴

1. 设计基础

1.1 两阶段: 单点与聚合

在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合

在单点阶段,会根据当前算法针对单个node计算
在聚合阶段,则会根据当前单点阶段计算完成后,来进行聚合

1.2 并行: 节点与算法

单点和聚合两阶段在计算的时候,都是并行的,但是对象则不同,其中单点阶段并行是针对单个node的计算,而聚合阶段则是针对算法级别的计算,通过这种设计分离计算,从而避免多goroutine之间数据竞争,无锁加速优选的计算

1.3 map与reduce

而map与reduce则是针对一个上面并行的两种具体实现,其中map中负责单node打分,而reduce则是针对map阶段的打分进行聚合后,根据汇总的结果进行二次打分计算

1.4 weight

map/reduce阶段都是通过算法计算,如果我们要进行自定义的调整,针对单个算法,我们可以调整其在预选流程中的权重,从而进行定制自己的预选流程 

1.5 随机分布

当进行优先级判断的时候,肯定会出现多个node优先级相同的情况,在优选节点的时候,会进行随机计算,从而决定是否用当前优先级相同的node替换之前的最合适的node

2. 源码分析 

优选的核心流程主要是在PrioritizeNodes中,这里只介绍其关键的核心数据结构设计

2.1 无锁计算结果保存

无锁计算结果的保存主要是通过下面的二维数组实现, 如果要存储一个算法针对某个node的结果,其实只需要通过两个索引即可:算法索引和节点索引,同理如果我吧针对单个node的索引分配给一个goroutine,则其去其他的goroutine则就可以并行计算

// 在计算的时候,会传入nodes []*v1.Node的数组,存储所有的节点,节点索引主要是指的该部分
results := make([]schedulerapi.HostPriorityList, len(priorityConfigs), len(priorityConfigs))

2.2 基于节点索引的Map计算


之前在预选阶段介绍过ParallelizeUntil函数的实现,其根据传入的数量来生成计算索引,放入chan中,后续多个goroutine从chan中取出数据直接进行计算即可

    workqueue.ParallelizeUntil(context.TODO(), 16, len(nodes), func(index int) {
        // 根据节点和配置的算法进行计算
        nodeInfo := nodeNameToInfo[nodes[index].Name]
            // 获取算法的索引
        for i := range priorityConfigs {
            if priorityConfigs[i].Function != nil {
                continue
            }

            var err error

                // 通过节点索引,来进行针对单个node的计算结果的保存
            results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
            if err != nil {
                appendError(err)
                results[i][index].Host = nodes[index].Name
            }
        }
    })

2.3 基于算法索引的Reduce计算


基于算法的并行,则是为每个算法的计算都启动一个goroutine,每个goroutine通过算法索引来进行该算法的所有map阶段的结果的读取,并进行计算,后续结果仍然存储在对应的位置

    // 计算策略的分值
    for i := range priorityConfigs {
        if priorityConfigs[i].Reduce == nil {
            continue
        }
        wg.Add(1)
        go func(index int) {
            defer wg.Done()
            if err := priorityConfigs[index].Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {
                appendError(err)
            }
            if klog.V(10) {
                for _, hostPriority := range results[index] {
                    klog.Infof("%v -> %v: %v, Score: (%d)", util.GetPodFullName(pod), hostPriority.Host, priorityConfigs[index].Name, hostPriority.Score)
                }
            }
        }(i)
    }
    // Wait for all computations to be finished.
    wg.Wait()

2.4 优先级打分结果统计

根据之前的map/reduce阶段,接下来就是将针对所有node的所有算法计算结果进行累加即可

    // Summarize all scores.
    result := make(schedulerapi.HostPriorityList, 0, len(nodes))

    for i := range nodes {
        result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
        // 便利所有的算法配置
        for j := range priorityConfigs {
            result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
        }

        for j := range scoresMap {
            result[i].Score += scoresMap[j][i].Score
        }
    }

2.5 根据优先级随机筛选host

这里的随机筛选是指的当多个host优先级相同的时候,会有一定的概率用当前的node替换之前的优先级相等的node(到目前为止的优先级最高的node), 其主要通过cntOfMaxScore和rand.Intn(cntOfMaxScore)来进行实现

func (g *genericScheduler) selectHost(priorityList schedulerapi.HostPriorityList) (string, error) {
    if len(priorityList) == 0 {
        return "", fmt.Errorf("empty priorityList")
    }
    maxScore := priorityList[0].Score
    selected := priorityList[0].Host
    cntOfMaxScore := 1
    for _, hp := range priorityList[1:] {
        if hp.Score > maxScore {
            maxScore = hp.Score
            selected = hp.Host
            cntOfMaxScore = 1
        } else if hp.Score == maxScore {
            cntOfMaxScore++
            if rand.Intn(cntOfMaxScore) == 0 {
                // Replace the candidate with probability of 1/cntOfMaxScore
                selected = hp.Host
            }
        }
    }
    return selected, nil
}

3. 设计总结

优选阶段通过分离计算对象来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴

本系列纯属个人臆测仅供参考,如果有看出错误的大佬欢迎指正

微信号:baxiaoshi2020
关注公告号阅读更多源码分析文章
更多文章关注 www.sreguide.com
本文由博客一文多发平台 OpenWrite 发布

图解kubernetes scheduler基于map/reduce无锁设计的优选计算的更多相关文章

  1. 图解kubernetes scheduler基于map/reduce模式实现优选阶段

    优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用 ...

  2. 基于Redis的分布式锁设计

    前言 基于Redis的分布式锁实现,原理很简单嘛:检测一下Key是否存在,不存在则Set Key,加锁成功,存在则加锁失败.对吗?这么简单吗? 如果你真这么想,那么你真的需要好好听我讲一下了.接下来, ...

  3. 图解 kubernetes scheduler 架构设计系列-初步了解

    资源调度基础 scheudler是kubernetes中的核心组件,负责为用户声明的pod资源选择合适的node,同时保证集群资源的最大化利用,这里先介绍下资源调度系统设计里面的一些基础概念 基础任务 ...

  4. 聊聊高并发(三十二)实现一个基于链表的无锁Set集合

    Set表示一种没有反复元素的集合类,在JDK里面有HashSet的实现,底层是基于HashMap来实现的.这里实现一个简化版本号的Set,有下面约束: 1. 基于链表实现.链表节点依照对象的hashC ...

  5. 基于CAS实现无锁结构

    杨乾成 2017310500302 一.题目要求 基于CAS(Compare and Swap)实现一个无锁结构,可考虑queue,stack,hashmap,freelist等. 能够支持多个线程同 ...

  6. 图解kubernetes调度器抢占流程与算法设计

    抢占调度是分布式调度中一种常见的设计,其核心目标是当不能为高优先级的任务分配资源的时候,会通过抢占低优先级的任务来进行高优先级的调度,本文主要学习k8s的抢占调度以及里面的一些有趣的算法 1. 抢占调 ...

  7. 分布式基础学习(2)分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...

  8. 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...

  9. Map Reduce和流处理

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由@从流域到海域翻译,发表于腾讯云+社区 map()和reduce()是在集群式设备上用来做大规模数据处理的方法,用户定义一个特定的映射 ...

随机推荐

  1. Cookie内不能直接存入中文,cookie转码以及解码

    如果在cookie中存入中文,极易出现问题. js在存入cookie时,利用escape() 函数可对字符串进行编码, 用unescape()进行解码 顺序是先把cookie用escape()函数编码 ...

  2. [C++] 获取IE代理服务器的账号密码

    很多程序需要使用'浏览器设置'的代理服务器,IE设置的代理服务器有可能是需要账号密码的.怎样编程获取浏览器设置的代理服务器的账号密码呢? InternetQueryOption(NULL, INTER ...

  3. C# 从 short 转 byte 方法

    本文告诉大家多个方法转换 short 和 byte 有简单的也有快的 快速简单的方法 static short ToShort(short byte1, short byte2) { return ( ...

  4. Filter、Intercepter、AOP的区别

    在使用Spring MVC开发RESTful API的时候,我们经常会使用Java的拦截机制来处理请求,Filter是Java本身自带拦过滤器,Interceptor则是Spring自带的拦截器,而A ...

  5. jquery ajax请求步骤

    $.ajax({ type: "GET", url: "/alink-hq/checkCode", data: { "mobile": ph ...

  6. POJ 3311 Hie with the Pie 兼 Codevs 2800 送外卖(动态规划->TSP问题)

    Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possi ...

  7. 【42.49%】【hdu 1542】Atlantis(线段树扫描线简析)

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...

  8. 编写自己的JDBC框架(转)

    一.元数据介绍 元数据指的是"数据库"."表"."列"的定义信息. 1.1.DataBaseMetaData元数据 Connection.g ...

  9. F4与F1对比

  10. Spring+dubbo错误(二)

    ERROR [TestContextManager.java:231] Caught exception while allowing TestExecutionListener [org.sprin ...