MNIST 源码解析
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Simple, end-to-end, LeNet-5-like convolutional MNIST model example. This should achieve a test error of 0.7%. Please keep this model as simple and
linear as possible, it is meant as a tutorial for simple convolutional models.
Run with --self_test on the command line to execute a short self-test.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import gzip
import os
import sys
import time import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf # 数据源
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
# 工作目录,存放下载的数据
WORK_DIRECTORY = 'data'
# MNIST 数据集特征:
# 图像尺寸 28x28
IMAGE_SIZE = 28
# 黑白图像
NUM_CHANNELS = 1
# 像素值0~255
PIXEL_DEPTH = 255
# 标签分10个类别
NUM_LABELS = 10
# 验证集共 5000 个样本
VALIDATION_SIZE = 5000
# 随机数种子,可设为 None 表示真的随机
SEED = 66478
# 批处理大小为64
BATCH_SIZE = 64
# 数据全集一共过10遍网络
NUM_EPOCHS = 10
# 验证集批处理大小也是64
EVAL_BATCH_SIZE = 64
# 验证时间间隔,每训练100个批处理,做一次评估
EVAL_FREQUENCY = 100 tf.app.flags.DEFINE_boolean("self_test", False, "True if running a self test.")
FLAGS = tf.app.flags.FLAGS # 如果下载过了数据,就不再重复下载
def maybe_download(filename):
"""Download the data from Yann's website, unless it's already here."""
if not tf.gfile.Exists(WORK_DIRECTORY):
tf.gfile.MakeDirs(WORK_DIRECTORY)
filepath = os.path.join(WORK_DIRECTORY, filename)
if not tf.gfile.Exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
with tf.gfile.GFile(filepath) as f:
size = f.Size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath # 抽取数据,变为 4维张量[图像索引,y, x, c]
# 去均值、做归一化,范围变到[-0.5, 0.5]
def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels]. Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, 1)
return data # 抽取图像标签
def extract_labels(filename, num_images):
"""Extract the labels into a vector of int64 label IDs."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
return labels # 假数据,用于功能自测
def fake_data(num_images):
"""Generate a fake dataset that matches the dimensions of MNIST."""
data = numpy.ndarray(
shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
dtype=numpy.float32)
labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64)
for image in xrange(num_images):
label = image % 2
data[image, :, :, 0] = label - 0.5
labels[image] = label
return data, labels
# 计算分类错误率
def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and sparse labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == labels) /
predictions.shape[0]) # 主函数
def main(argv=None): # pylint: disable=unused-argument
if FLAGS.self_test:
print('Running self-test.')
train_data, train_labels = fake_data(256)
validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE)
test_data, test_labels = fake_data(EVAL_BATCH_SIZE)
num_epochs = 1
else:
# 下载数据
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz') # 载入数据到numpy
train_data = extract_data(train_data_filename, 60000)
train_labels = extract_labels(train_labels_filename, 60000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000) # 产生评测集
validation_data = train_data[:VALIDATION_SIZE, ...]
validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]
num_epochs = NUM_EPOCHS
train_size = train_labels.shape[0] # 训练样本和标签将从这里送入网络。
# 每训练迭代步,占位符节点将被送入一个批处理数据
# 训练数据节点
train_data_node = tf.placeholder(
tf.float32,
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
# 训练标签节点
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
# 评测数据节点
eval_data = tf.placeholder(
tf.float32,
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) # 下面这些变量是网络的可训练权值
# conv1 权值维度为 32 x channels x 5 x 5, 32 为特征图数目
conv1_weights = tf.Variable(
tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32.
stddev=0.1,
seed=SEED))
# conv1 偏置
conv1_biases = tf.Variable(tf.zeros([32]))
# conv2 权值维度为 64 x 32 x 5 x 5
conv2_weights = tf.Variable(
tf.truncated_normal([5, 5, 32, 64],
stddev=0.1,
seed=SEED))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]))
# 全连接层 fc1 权值,神经元数目为512
fc1_weights = tf.Variable( # fully connected, depth 512.
tf.truncated_normal(
[IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
stddev=0.1,
seed=SEED))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512]))
# fc2 权值,维度与标签类数目一致
fc2_weights = tf.Variable(
tf.truncated_normal([512, NUM_LABELS],
stddev=0.1,
seed=SEED))
fc2_biases = tf.Variable(tf.constant(0.1, shape=[NUM_LABELS])) # 两个网络:训练网络和评测网络
# 它们共享权值 # 实现 LeNet-5 模型,该函数输入为数据,输出为fc2的响应
# 第二个参数区分训练网络还是评测网络
def model(data, train=False):
"""The Model definition."""
# 二维卷积,使用“不变形”补零(即输出特征图与输入尺寸一致)。
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# 加偏置、过激活函数一块完成
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
# 最大值下采样
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# 第二个卷积层
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# 特征图变形为2维矩阵,便于送入全连接层
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(
pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
# 全连接层,注意“+”运算自动广播偏置
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
# 训练阶段,增加 50% dropout;而评测阶段无需该操作
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
return tf.matmul(hidden, fc2_weights) + fc2_biases # Training computation: logits + cross-entropy loss.
# 训练阶段计算: 对数+交叉熵 损失函数
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, train_labels_node)) # 全连接层参数进行 L2 正则化
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
# 将正则项加入损失函数
loss += 5e-4 * regularizers # 优化器: 设置一个变量,每个批处理递增,控制学习速率衰减
batch = tf.Variable(0)
# 指数衰减
learning_rate = tf.train.exponential_decay(
0.01, # 基本学习速率
batch * BATCH_SIZE, # 当前批处理在数据全集中的位置
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch) # 用softmax 计算训练批处理的预测概率
train_prediction = tf.nn.softmax(logits) # 用 softmax 计算评测批处理的预测概率
eval_prediction = tf.nn.softmax(model(eval_data)) # Small utility function to evaluate a dataset by feeding batches of data to
# {eval_data} and pulling the results from {eval_predictions}.
# Saves memory and enables this to run on smaller GPUs.
def eval_in_batches(data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < EVAL_BATCH_SIZE:
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in xrange(0, size, EVAL_BATCH_SIZE):
end = begin + EVAL_BATCH_SIZE
if end <= size:
predictions[begin:end, :] = sess.run(
eval_prediction,
feed_dict={eval_data: data[begin:end, ...]})
else:
batch_predictions = sess.run(
eval_prediction,
feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions # Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf.initialize_all_variables().run()
print('Initialized!')
# Loop through training steps.
for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph it should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_labels}
# Run the graph and fetch some of the nodes.
_, l, lr, predictions = sess.run(
[optimizer, loss, learning_rate, train_prediction],
feed_dict=feed_dict)
if step % EVAL_FREQUENCY == 0:
elapsed_time = time.time() - start_time
start_time = time.time()
print('Step %d (epoch %.2f), %.1f ms' %
(step, float(step) * BATCH_SIZE / train_size,
1000 * elapsed_time / EVAL_FREQUENCY))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
print('Validation error: %.1f%%' % error_rate(
eval_in_batches(validation_data, sess), validation_labels))
sys.stdout.flush()
# Finally print the result!
test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
print('Test error: %.1f%%' % test_error)
if FLAGS.self_test:
print('test_error', test_error)
assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (
test_error,)
# 程序入口点
if __name__ == '__main__':
tf.app.run()
MNIST 源码解析的更多相关文章
- [源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入
[源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 目录 [源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 0x00 摘要 0 ...
- [源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer
[源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 目录 [源码解析] 深度学习分布式训练框架 horovod (7) --- Distri ...
- [源码解析] 深度学习分布式训练框架 horovod (18) --- kubeflow tf-operator
[源码解析] 深度学习分布式训练框架 horovod (18) --- kubeflow tf-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (18) --- kube ...
- [源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练
[源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练 目录 [源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练 0x00 摘要 0 ...
- [源码解析] PyTorch 分布式(4)------分布式应用基础概念
[源码解析] PyTorch 分布式(4)------分布式应用基础概念 目录 [源码解析] PyTorch 分布式(4)------分布式应用基础概念 0x00 摘要 0x01 基本概念 0x02 ...
- [源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器
[源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 目录 [源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 0x0 ...
- [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑
[源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 1. 总述 2. 接口 2.1 ...
- [源码解析] TensorFlow 分布式环境(4) --- WorkerCache
[源码解析] TensorFlow 分布式环境(4) --- WorkerCache 目录 [源码解析] TensorFlow 分布式环境(4) --- WorkerCache 1. WorkerCa ...
- [源码解析] TensorFlow 分布式环境(5) --- Session
[源码解析] TensorFlow 分布式环境(5) --- Session 目录 [源码解析] TensorFlow 分布式环境(5) --- Session 1. 概述 1.1 Session 分 ...
随机推荐
- Shell常用语句及结构
条件判断语句之if if 语句通过关系运算符判断表达式的真假来决定执行哪个分支:shell有三种if语句样式,如下: 语句1 if [ expression ] then Statement(s) t ...
- qt creator源码全方面分析(2-1-1)
目录 C++的策略/二进制兼容性问题 定义 ABI注意事项 可做与不可做 库程序员的技巧 位标志 使用d指针 故障排除 在没有d指针的情况下将新数据成员添加到类中 添加已重新实现的虚函数 使用新类 向 ...
- SpringBoot学习遇到的问题(1) - 配置文件有日志的debug模式等配置项,为什么不起作用
这个问题困扰我近乎两天,通过查找N多资料后终于解决,写下来共享给大家. logging.level.root=DEBUG ... 一系列的日志配置项,都不起作用的原因是springboot启动加载不到 ...
- JSP&Servlet学习笔记----第3章
Web容器是JSP/Servlet唯一认识的HTTP服务器. HTTP是基于请求/响应的无状态通信协议. 流程: 1.请求来到HTTP服务器 2.HTTP服务器将请求转交给Web容器 3.Web容器创 ...
- jQuery初学者笔记 一
jQuery初学者笔记 一 Mirror王宇阳 by jQuery语法 jQuery语法是通过选取HTML元素,并对选取的元素进行操作 基础语法: 所有jQuery语句用"$"符号 ...
- 给Hangfire的webjob增加callback和动态判断返回结果功能设计
背景介绍 通常业务中需要用到定时执行功能,我用hangfire搭建了一个调度服务,这个调度服务是独立于业务逻辑的,具体可以参考文章:https://github.com/yuzd/Hangfire.H ...
- 2020牛客寒假算法基础集训营4 D:子段异或
D : 子段异或 考察点 : 位运算,前缀和,异或的性质和应用 坑点 : 0 - L 的异或值是 0 的话也是一个区间 相同的值可能有多个,那么这时候区间就会有多个(x * (x + 1) / 2) ...
- 简化 Spring Boot 项目部署,Flyway 搞起来
虽然我之前录了一个微人事(https://github.com/lenve/vhr)部署视频(新版微人事部署教程来啦),但是由于这次升级涉及到了 Redis 和 RabbitMQ,所以在本地跑微人事还 ...
- python学习(8)实例:写一个简单商城购物车的代码
要求: 1.写一段商城程购物车序的代码2.用列表把商城的商品清单存储下来,存到列表 shopping_mail3.购物车的列表为shopping_cart4.用户首先输入工资金额,判断输入为数字5.用 ...
- java架构之路-(微服务专题)feign的基本使用和nacos的配置中心
上次回归: 上次我们说了ribbon的基本使用,包括里面的内部算法,算法的细粒度配置,还有我们自己如何实现我们自己的算法,主要还是一些基本使用的知识,还不会使用ribbon的小伙伴可以回去看一下上一篇 ...