正解:位运算

解题报告:

传送门!

其实就是个位运算,,,只是顺便加了个期望的知识点$so$期望的帕并不难来着$QwQ$

先把期望的皮扒了,就直接分类讨论下,不难发现,答案分为两个部分

$\left\{\begin{matrix}l=r & \frac{1}{n}\cdot\frac{1}{n}=\frac{1}{n^{2}}\\ \\ l\neq r & \frac{2}{n}\cdot\frac{1}{n}=\frac{2}{n^{2}}\end{matrix}\right.$

这样就只要求出值,然后乘以概率就得到期望辽$QwQ$

然后现在的问题就变成了,怎么快速求出所有区间的$xor$和,$and$和,$or$和

可以发现每一位互不影响,所以对每一位都扒出来,然后单独看这一位,只要能求出这一位中有多少个子区间满足通过$xor$/$and$/$or$运算之后是1,乘以$2^{k}$即可

(啊这儿说下,,,因为$l=r$的情况直接枚举每一个数直接算就好,$so$下面所有讨论的都是$l\neq r$的来着

先说$and$和趴,考虑先枚举一个右端点$r$,考虑$and$的性质,所以考虑找到前面第一个0出现的位置$lst_{0}$,如果这一位也为1,那么左端点就可以取$[lst_{0}+1,r-1]$,就欧克了

对于$or$和的话,依然考虑枚举右端点$r$,找到前一个1出现的位置$lst_{1}$,如果这一位为1,那么左端点可以取$[1,r-1]$,如果这一位不为0,那么左端点可以取$[1,lst_{1}]$

最后说下$xor$和,因为这个相对而言复杂一些$so$放到最后港$QwQ$

首先依然是枚举右端点$r$,因为$xor$的性质,所以考虑找到所有为1的点,然后根据这些点进行黑白染色,就会是左端点可以取所有白段($umm$其实因为我都还麻油说黑白色是染啥$but$意会下能$get$的趴,,,懒得详细说了,画图应该会好理解些但我懒得画鸭$QAQ$

然后考虑怎么递推,不难发现,从$r$变成$r+1$,首先会是黑段长度++,然后这儿要分类讨论下,就当$r$点是1的时候,要交换下黑段和白段的长度,意会下,非常显然不想详细港了

综上,这题做完辽

具体看代码趴$QAQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define lf double
#define int long long
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i) const int N=1e5+;
int n,a[N],lst[],p[],as_xor,as_and,as_or; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
} main()
{
n=read();rp(i,,n)a[i]=read(),as_xor=as_and=as_or=as_xor+a[i];
rp(i,,)
{
lst[]=lst[]=p[]=p[]=;
rp(j,,n)
{
ri dat=(a[j]>>i)&;
if(dat)
{
as_and+=2ll*(j-lst[]-)*(<<i);
as_or+=2ll*(j-)*(<<i);
as_xor+=2ll*p[]*(<<i);
swap(p[],p[]);
++p[];lst[]=j;
}
else
{
as_or+=2ll*lst[]*(<<i);
as_xor+=2ll*p[]*(<<i);
++p[];lst[]=j;
}
}
}
printf("%.3lf %.3lf %.3lf",(lf)as_xor/(1ll*n*n),(lf)as_and/(1ll*n*n),(lf)as_or/(1ll*n*n));
return ;
}

这儿是代码$qwq$

对了说个细节,,,

就是这题好像有点儿卡精度,,,?如果在过程中边做边除好像就必须是/$n$/$n$,改成/$n^{2}$好像就会爆炸,,,

然后这儿的建议是过程中不除,,,直接在结尾一块儿除,,,但是这样的话就记得全程开$ll$,,,我的话是直接$define\ int\ long\ long$了,注意下$QwQ$

$over!$

随机推荐

  1. MyEclipse2016项目内复制一个项目,如何更改项目的访问路径

    在MyEclipse2010版本如果复制了一个项目,需要改项目的访问路径的话,可以选中项目右键,点开Properties,在顶部搜索web,就会出现如下内容,这是只需要在里面更改路径就可以了. 而在2 ...

  2. @bzoj - 4524@ [Cqoi2016]伪光滑数

    目录 @description@ @solution@ @version - 1@ @version - 2@ @accepted code@ @version - 1@ @version - 2@ ...

  3. 模板—树上倍增LCA

    int LCA(int x,int y) { if(x==y)return x; if(dep[x]>dep[y])swap(x,y); while(dep[x]<dep[y]) ;;i+ ...

  4. 列出display的值,说明他们的作用。position的值, relative和 absolute定位原点是?

    display的值: block 像块类型元素一样显示. none 像行内元素类型一样显示. inline-block 像行内元素一样显示, 但其内容像块类型元素一样显示. list-item 像块类 ...

  5. pip安装指定版本的应用

    可以在pip后使用 == 运算符指定版本号 pip install applicationName==version

  6. 在Element节点上进行Xpath

    XPathFactory xPathFactory = XPathFactory.newInstance(); XPath xpath = xPathFactory.newXPath(); try { ...

  7. 通俗理解tf.name_scope()、tf.variable_scope()

    前言:最近做一个实验,遇到TensorFlow变量作用域问题,对tf.name_scope().tf.variable_scope()等进行了较为深刻的比较,记录相关笔记:tf.name_scope( ...

  8. linux如何查看nginx是否启动

    Nginx是一个高性能的反向代理服务器,现在一般作为我们网站或其他Web服务的第一层代理,用户在浏览器请求首先经过的就是Nginx服务. 如果Nginx服务没有启动或异常结束,将会影响Web服务的正常 ...

  9. (二)C#编程基础复习——变量和常量

    今天要复习一下C#基础中的变量和常量,所谓变量,就是用来存储特定类型的数据,分为值类型和引类型,可以根据需要随时改变变量中所村存储的数据值,变量必须先声明,然后才能赋值:常量就是固定不变的值,常量的变 ...

  10. Vue之webpack的entry和output

    一.文件结构 二.index.html <!DOCTYPE html> <html lang="en"> <head> <meta cha ...