【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)

神题

我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不幸的是,这样子无法控制一个点是否选择多次,并且无法控制那些不需要变成守卫的点的情况

然后我看了题解..

一个元素的两种状态可以对应上一条边的方向,现在问题就变成了要选出一些边使得所有点的入度为1。也就是一个外向基环森林,直接类似克鲁斯卡尔做就行了。

这貌似可以抽象成一种模型,也就是有待选点,匹配点,待选点匹配点只能选择且必须选择一个待选点,一个待选点只能选择一个匹配点,同一个点任意选择匹配代价一样。若可以接受\(O(\prod P_i)\)的复杂度其中\(P\)代表一种匹配点的个数,那么就可以这样考虑给边定向构成外向基环森林来做。


//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e6+5;
struct E{
int u,v,w;
inline bool operator <(const E&a){return w<a.w;}
}; vector<E> e;
int n,m,cnt;
ll w;
inline void add(const int&fr,const int&to,const int&w){e.push_back({fr,to,w});} int r[maxn*3],siz[maxn*3],c[maxn*3];
inline int q(const int&x){
int t=x,i=x,temp;
while(t^r[t]) t=r[t];
while(i^r[i]) temp=r[i],r[i]=t,siz[t]+=siz[i],siz[i]=0,c[t]|=c[i],c[i]=0,i=temp;
return t;
} inline void J(int x,int y){
if(siz[q(x)]>siz[q(y)])swap(x,y);
r[q(x)]=q(y); q(x);
} int main(){
#ifndef ONLINE_JUDGE
freopen("cpp.in","r",stdin);
freopen("cpp.out","w",stdout);
#endif
n=qr(); m=qr();
cnt=n+m;
for(int t=1;t<=n;++t)
for(int i=1,u;i<=m;++i)
u=qr(),add(t,i+n,u);
for(int t=1;t<=cnt;++t) r[t]=t,siz[t]=1;
sort(e.begin(),e.end());
for(int t=0,ed=e.size();t<ed;++t){
int u=q(e[t].v),v=q(e[t].u);
if(!c[u]||!c[v]){
//printf("%d %d\n",u,v);
if(u==v) c[u]=c[v]=1;
J(u,v),w=w+e[t].w;
}
}
printf("%lld\n",w);
cerr<<"w = "<<w<<endl;
return 0;
}

【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)的更多相关文章

  1. bzoj4883 [Lydsy1705月赛]棋盘上的守卫 最小生成基环树森林

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4883 题解 每一行和每一列都必须要被覆盖. 考虑对于每一行和每一列都建立一个点,一行和一列之间 ...

  2. [BZOJ4883][Lydsy1705月赛]棋盘上的守卫[最小基环树森林]

    题意 有一大小为 \(n*m\) 的棋盘,要在一些位置放置一些守卫,每个守卫只能保护当前行列之一,同时在每个格子放置守卫有一个代价 \(w\) ,问要使得所有格子都能够被保护,需要最少多少的代价. \ ...

  3. BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)

    4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 475  Solved: 259[Submit][St ...

  4. 【bzoj4883】[Lydsy2017年5月月赛]棋盘上的守卫 最小环套树森林

    题目描述 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置最多只能放置一个 ...

  5. [BZOJ4883][Lydsy1705月赛]棋盘上的守卫(Kruskal)

    对每行每列分别建一个点,问题转为选n+m条边,并给每条边选一个点覆盖,使每个点都被覆盖.也就是最小生成环套树森林. 用和Kruskal一样的方法,将边从小到大排序,若一条边被选入后连通块仍然是一个环套 ...

  6. 【BZOJ4883】 [Lydsy1705月赛]棋盘上的守卫(最小生成树,基环树)

    传送门 BZOJ Solution 考虑一下如果把行,列当成点,那么显然这个东西就是一个基环树对吧. 直接按照\(Kruscal\)那样子搞就好了. 代码实现 代码戳这里

  7. BZOJ 4883: [Lydsy1705月赛]棋盘上的守卫 最小生成树 + 建模

    Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置 ...

  8. bzoj 4883 [Lydsy1705月赛]棋盘上的守卫——并查集(思路!)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 把各行和各列看成n+m个点. 如果一下能防守行和列,就是最大匹配了.这是每两个左右部点 ...

  9. 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法

    [BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...

随机推荐

  1. 设置select和option的文字居中

    select{ width: auto;      padding: 0 1%; //左右一定要设置      margin: 0; } option{ text-align:center; }

  2. @atcoder - AGC037F@ Counting of Subarrays

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 L,连续至少 L 个相同的数 k 可以合并成 1 个 k+ ...

  3. oracle函数 INTERVAL c1 set1

    [功能]:变动日期时间数值 [参数]:c1为数字字符串或日期时间字符串,set1为日期参数 [参数表]:set1具体参照示例 [返回]:日期时间格式的数值,前面多个+号 以天或天更小单位时可用数值表达 ...

  4. 全文检索 java Lucene

    索引文件:[D:\luceneDemo\data\TXT小说\陛下是妻迷.txt] 大小:[1185.0 KB] 索引文件:[D:\luceneDemo\data\TXT小说\随身空间重生在七十年代. ...

  5. oracle总是使用索引的第一个列

    如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 译者按: 这也是一条简单而重要的规则. 见以下实例. SQL> ...

  6. HTML静态网页--JavaScript-DOW操作

    1.DOM的基本概念 DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对象是指文档中每个元素:模型是指抽象化的东西. 2.Windows对象操作 一.属性和方法: 属性(值或者子对象): o ...

  7. uva 11275 3D Triangles (3D-Geometry)

    uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem= ...

  8. iptables [-t table] 指定规则表

    -t 参数用来,内建的规则表有三个,分别是:nat.mangle 和 filter,当未指定规则表时,则一律视为是 filter.个规则表的功能如下: nat:此规则表拥有 PREROUTING 和 ...

  9. 智课雅思短语---三、unshakable duty

    智课雅思短语---三.unshakable duty 一.总结 一句话总结:不可推卸的义务 unshakable duty 1.satisfy/ meet the needs of…? 满足需求 2. ...

  10. jQuery 选择器 bug

    $(function(){ $(".menu li").hide(); //目标对象(一定要用class或id选择器)绑定函数 $(".menu").click ...