POJ 3666 Making the Grade (线性dp,离散化)
Making the Grade
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).
You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is
|A1 - B1| + |A2 - B2| + ... + |AN - BN |
Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.
<i>N</i><br>* Lines 2..<i>N</i>+1: Line
<i>i</i>+1 contains a single integer elevation:
<i>A<sub>i</sub></i> </p>
cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing
in elevation.</p>
1
3
2
4
5
3
9
对于这个引理,简单地证明一下:
可以用数学归纳法证明。
假设b[1~k-1]都在a[]中出现过;
对于b[k],若a[k]>b[k-1],则b[k]=a[k]解最优;
若a[k]<b[k-1],则一定存在t,使b[t~k]变为a[k]的最优解;
或b[k]=b[k-1];
特殊地,对于1号位置,b[1]=a[1]必定为最优解。
综上,引理显然得证。
接下来进行dp
我们令dp[i][j]来表示前i个数中形成单调序列并且最后一个为j的 最小花费;那么因为最后一个数为j,所以之前的数必须小于j,所以(i,j)的花费 为min{dp[i][k]}+j-a[i];
所以状态转移方程为 dp[i][j]=min{dp[i][k]}+j-a[i];
还不知道怎么推
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 0x3f3f3f3f;
using namespace std;
int n;
int a[], num[], f[][];
int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
scanf("%d", &a[i]);
num[i] = a[i];
}
sort(num + , num + n + );
memset(f,0x3f3f3f3f, sizeof(f));
f[][] = ;
int tmp = ;
int i, j;
for (i = ; i <= n; i++)
{
tmp = f[i-][];
for (j = ; j <= n; j++)
{
tmp = min(tmp, f[i - ][j]);
f[i][j] = abs(num[j] - a[i]) + tmp;
}
}
int ans = inf;
for (i = ; i <= n; i++)
{
ans = min(ans, f[n][i]);
}
printf("%d\n", ans);
return ;
}
POJ 3666 Making the Grade (线性dp,离散化)的更多相关文章
- POJ - 3666 Making the Grade(dp+离散化)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- poj 3666 Making the Grade(dp离散化)
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7068 Accepted: 3265 ...
- Poj 3666 Making the Grade (排序+dp)
题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...
- poj3666/CF714E/hdu5256/BZOJ1367(???) Making the Grade[线性DP+离散化]
给个$n<=2000$长度数列,可以把每个数改为另一个数代价是两数之差的绝对值.求把它改为单调不增or不减序列最小代价. 话说这题其实是一个结论题..找到结论应该就很好做了呢. 手玩的时候就有感 ...
- POJ 3666 Making the Grade (DP)
题意:输入N, 然后输入N个数,求最小的改动这些数使之成非严格递增即可,要是非严格递减,反过来再求一下就可以了. 析:并不会做,知道是DP,但就是不会,菜....d[i][j]表示前 i 个数中,最大 ...
- POJ 3666 Making the Grade (DP滚动数组)
题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...
- POJ 3666 Making the Grade【DP】
读题堪忧啊,敲完了才发现理解错了..理解题必须看样例啊!! 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#pro ...
- POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)
传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- python随机数,随机选择……random
import random from random import random, uniform, randint, randrange, choice, sample, shuffle list = ...
- Java——线程间通信
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- DevExpress v17.2新版亮点—WinForms篇(四)
用户界面套包DevExpress v17.2终于正式发布,本站将以连载的形式为大家介绍各版本新增内容.开篇介绍了DevExpress WinForms v17.2 Data Grid Control ...
- L228 the complicated issue of equality: non-disabled actors play disabled roles
Bryan Cranston’s defence of playing a wheelchair user in the new comedy-drama The Upside has underli ...
- Translating Skills(1)
本文是参加公司英语翻译培训的课程.做此记录,以防忘记. ------------------------------------------------------------------------ ...
- es6 规范 的 具体用法 -- 待续
链接 1. const 表示不会被重新赋值的, 包括了不会被修改的, const 可以被修改, 但是不会被整体覆盖 由于是静态分析, const 相对 let 执行效率 更高 2. 模板字符串 ...
- apache中的RewriteCond、RewriteRule
Rewirte主要的功能就是实现URL的跳转.可基于服务器级的(httpd.conf)和目录级的(.htaccess) 两种方式.如果要想用到rewrite模块,必须先安装或加载rewrite模块. ...
- A+B for Input-Output Practice (IV)
A+B for Input-Output Practice (IV) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- Adaboost新理解
Adaboost有几个难点: 1.弱分类器的权重怎么理解? 误差大的弱分类器权重小,误差小的弱分类器权重大.这很好理解.在台湾大学林轩田老师的视频中,推导说,这个权值实际上貌似梯度下降,权值定义成1/ ...
- 在 Ubuntu 18.0-10上安装 MySQL8
直接使用apt install mysql-server安装,那么恭喜你踩坑. sudo apt install mysql-server默认会安装MySQL 5.7,将会出现一些莫名的问题,例如:安 ...