一、 性能测试需求分析

1.1      性能测试需求内容

性能测试需求应包括以下内容:

a)    测试场景及用例,用例访问URL;

b)   目标接口方法的入参、出参;

c)    外部依赖的服务细节;

d)  关键数据: 数据量、高峰业务PV量

e)  预期性能指标:响应时间、QPS、TPS等

性能测试需求模板表格参考如下:

性能测试(1) ---性能测试需求收集

1.2 预期性能指标1.2.1数据量
测试环境的数据量,应该跟线上环境保持一致,至少要在一个数量级。

举例有,中文站线上的每秒登录用户数据量平时为20个,特殊情况下,每秒为10万,那么测试环境要保证正常情况下在20个左右,至少是十的数量级,性能测试特殊情况下,要准备十万级的数据量,模拟最高并发用户数据量。

1.2.2高峰业务PV量
     1) 二八法

若80%的访问量集中在20%的时间里,可用此分析方法,其图形就是一个正态分布图,如下。

具体计算公式为:

tps = (24小时的PV值*80%)/(24*3600*20%)

举例有,假如中文站每日的访问量为500万,其中19:00-23:40,访问量为400万,其余时间段的访问量很平坦,而且其余时间段的总访问量为100万,那么就可以用二八法,其计算公式为 tps = (500万*0.8)/(24*3600*0.2)。

2)简单峰值法

若在每天的某一时段里有很大的访问量,其他时间相对较少,可以用简单峰值法,其实二八法只是简单峰值法的一个特例。

具体计算公式为:

tps =(24小时的PV值)/(峰值时间段中的小时数*3600)

举例有,假如中文站每日的访问量为500万,其中17:00-24:00这个时间段里面访问量为450万,其他时间段的访问量很平缓,那么,我可以用简单峰值法近似计算,其计算公式为 tps = 500万/((24-17)*3600)

3)无峰值法

若24小时里的访问量都是平稳波动的,没有峰值,那么可以采用无峰值计算方法,图形如下。

具体计算公式为:

tps= (24小时的PV值)/(24*3600)

举例有,假如中文站每日的访问量为500万,每小时的访问量都为20万左右,那么,可以用无峰值法来近似计算,其计算公式为 tps = 500万/(24*3600)。

1.2.3吞吐量
      指软件系统在每单位时间内能处理多少事务/请求/单位数据等,

其与tps的近似计算公式为:(单位为秒)

tps = 这段时间内的总样本数/(最后一个请求完成的时刻-第一个请求发起的时刻)

可以这样举例,假如,在17:58的0 秒发起第一个请求,在18:02分0秒完成最后一个请求,在这4分钟整的期间,共处理的总的样本数为1000个,那么,可以这样近似计算:

tps = 1000/(4*60)

值得注意的是,因为每个请求之间的空闲值也包含在内了,故tps是有误差的,而且tps是个平均值。

来源: <http://blog.sina.com.cn/s/blog_639aa08501010kkr.html>

需求收集之后,我们已经从性能需求文档中提取出了业务性能测试指标,主要包括PV到TPS的转换以及响应时间要求,接下来我们需要进行进一步的需求分析过程。

1了解系统架构、明确压力流向
    例如统一订购平台的系统架构图:

理解架构图中各个节点的功能与交互关系,通过系统架构图我们能看到压力的入口,即oop应用。请求从oop发起,从udb取到会员数据后,通过dubbo接口,调用订购服务层提供的各种服务,订购服务层所需数据全部从对应cache中取。因此,主干压力流向可得知:

Oop—>udb

Oop—>dubbo—>订购服务层—>cache

然后结合需求文档,根据具体业务场景,确定各分支压力流向,比如有的业务场景需要从pc2取得用户的服务记录,有的业务场景需要付款则需要去帐户中心取得帐户信息,则新增的压力流向如下:

Oop—>dubbo—>pc2—>cache

Oop—>dubbo—>帐户中心

针对每一个测试场景,都要根据系统架构图进行上述分析,明确了各场景的压力流向,即明确了性能测试过程中的监控对象。

监控对象确定后,需要进一步分析明确测试重点,如上例,我们关注的重点是网站的oop应用,因为平台的udb、pc2,crm的服务订购中心,都有各自做过接口性能测试。或者有的所用应用功能是线上已有的,并没有修改变动,如帐户中心。明确测试重点,将有助于我们进行测试环境相关的测试策略的选择。

2 明确测试环境2.1 服务器数量确定
根据系统架构图,我们得到了项目中所涉及的环境。众所周知,测试环境越接近生产环境,则测试结果越精确。但通常我们会碰到服务器资源紧张,或者所用应用为外部门的外围环境,搭建方法复杂。此时我们面临两种选择,要么使用功能环境,要么mock掉该环境。建议不要选择前者,可以多个压力流向小的应用公用一台性能服务器。

2.2 服务器配置确定
还是一条不变的原则:测试环境软硬件配置尽量与生产环境保持一致。

机器的性能需求:32位or64位;4核or8核;是否要求同一网段

测试环境软件架构确定(jdk、apache、jboss版本、jvm参数):与线上环境一致,重点关注jvm参数配置,确保与线上一致。

性能测试关注的主要硬件配置及OS参数如下表:

主机/ip

硬件配置

操作系统及参数调整

10.20.133.165

统一订购层应用服务器

机型

PowerEdge 1950

Linux  2.6.18-92.el5

64位操作系统

CPU

Intel(R) Xeon(R) CPU E5410  @ 2.33GHz * 8

内存

10G

网络

1000M

应用服务器配置检查中常用的linux指令:

查看机型: dmidecode --type 1|grep "Product Name"

查看CPU: cat /proc/cpuinfo

查看内存:free -mt

红框内即为本机内存总量

查看网卡:

1)ifconfig 检查服务器连接的哪块网卡(ethx)

上图红框内即为当前活动的网卡

2)ethtool ethx 检查网卡详细信息(ethx为ifconfig检查出来的网卡编号,如上图就为eth0)

上图红框内即为当前网卡带宽(双工模式)

查看操作系统:

uanme -a 查看所有信息

uname -o, --operating-system    GNU/Linux

-r, --kernel-release      2.6.18-128.el5(操作系统内核版本)

-i, --hardware-platform   x86_64(硬件版本)

-o, --operating-system    x86_64(操作系统版本)

3      关键业务数据量分析3.1 数据量需求确认
1) 数据量是指的性能测试需要考虑的数据总量和数据类型。

例如在offer数据量为30w的DB中查询和在offer数据量为1000w的DB中查询,性能表现一定是不一样的。我们需要考虑,现阶段的数据量等级和未来发展趋势下的数据量等级。有的时候数据量也是程序分支逻辑,所以这点就必须详细考虑了。

2)    存储分布指的数据源的分布情况,是分布式分布还是单台分布;是search分布还是DB分布,等等。例如offer拆分项目的性能测试就需要综合考虑Oracle单表、Oracle16张表、mysql128张表的使用场景

3)    基本要求:测试数据库数据量要与线上数据量保持一个数量级。

3.2 造数据方法确定
根据数量级的需要,可以采用不同的方法,大致有以下几种:

1) 找DBA帮忙导线上/测试库数据;

2) 用datafactory/sql直接插数据库;(查看datafactory文档)

界面如图,具体使用方法问google

3) 用jmeter/LR/ruby等脚本走正常业务流造数据。(查看各脚本录制方法)

3.3划分测试场景、明确测试用例
测试用例的产生需要考虑以下几方面:

1)    测试页面和业务逻辑,也就是业务对应的功能点

注意,性能测试的测试用例也需要专一性,也就是对应单个测试功能点。

因为我们监控的是每个事物的响应时间,功能点需要单一。

2)    压力持续时间

压力持续时间指的是给服务器施加多长时间的压力。

这个时间,我们会结合测试场景,对压力时间做一定的控制。

ü  如果测试的是高峰场景,时间一般最少为1个小时;

ü  如果测试的是稳定性场景,时间一般最少要求8小时;

3)    并发数

不要混淆并发和TPS的关系。

并发数指的是同时有多少用户(线程)在对服务器施加压力,是量化的给服务器的压力;而TPS指的是服务器每秒钟能够处理的事物数,是服务器处理能力的体现。

来源: <http://blog.sina.com.cn/s/blog_639aa08501010kkx.html>

性能测试需求分析 业务PV量,响应时间、QPS、TPS的更多相关文章

  1. 阿里云云盾抗下全球最大DDoS攻击(5亿次请求,95万QPS HTTPS CC攻击) ,阿里百万级QPS资源调度系统,一般的服务器qps多少? QPS/TPS/并发量/系统吞吐量

    阿里云云盾抗下全球最大DDoS攻击(5亿次请求,95万QPS HTTPS CC攻击) 作者:用户 来源:互联网 时间:2016-03-30 13:32:40 安全流量事件https互联网资源 摘要:  ...

  2. QPS/TPS/并发量/系统吞吐量概念和公式

    1.概念 我们在日常工作中经常会听到QPS/TPS这些名词,也会经常被别人问起说你的系统吞吐量有多大.一个系统的吞度量(承压能力)与request对CPU的消耗.外部接口.IO等等紧密关联,单个req ...

  3. QPS/TPS/并发量/系统吞吐量的概念

    我们在日常工作中经常会听到QPS/TPS这些名词,也会经常被别人问起说你的系统吞吐量有多大.这个问题从业务上来讲,可以理解为应用系统每秒钟最大能接受的用户访问量.或者每秒钟最大能处理的请求数: QPS ...

  4. 聊聊QPS/TPS/并发量/系统吞吐量的概念

    原文:聊聊QPS/TPS/并发量/系统吞吐量的概念 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/cainiao_user/article/deta ...

  5. loadrunner 响应时间和TPS

    例子:一个高速路有10个入口,每个入口每秒钟只能进1辆车 1.请问1秒钟最多能进几辆车?    TPS=10 2.每辆车需要多长时间进行响应?    reponse time = 1 3.改成20辆车 ...

  6. 计算服务器的pv量算法

    如何计算服务器能够承受多大的pv?   你想建设一个能承受500万PV/每天的网站吗? 500万PV是什么概念?服务器每秒要处理多少个请求才能应对?如果计算呢? PV是什么: PV是page view ...

  7. 【MySQL】为什么不要问我DB极限QPS/TPS

    为什么不要问我DB极限QPS/TPS 背景 相信很多开发都会有这个疑问,DB到底可以支撑多大的业务量,如何去评估?对于这个很专业的问题,DBA也没有办法直接告诉你,更多的都是靠经验提供一个看似靠谱的结 ...

  8. QPS/TPS的预估

    先说标准概念: TPS:Transactions Per Second(每秒传输的事物处理个数),即服务器每秒处理的事务数.TPS包括一条消息入和一条消息出,加上一次用户数据库访问.(业务TPS = ...

  9. 关于并发用户数的思考-通过PV量换算并发

    首先介绍一下pv量:PV(访问量):即Page View, 即页面浏览量或点击量,用户每次刷新即被计算一次.UV(独立访客):即Unique Visitor,访问您网站的一台电脑客户端为一个访客.00 ...

随机推荐

  1. zabbix批量添加SNMP监听H3C端口检测以及流量图

    由于之前网络设备不是很多,监控网络设备接口就直接使用模版中的item来实现了,可是现在公司上线了一大批网络设备,如果要每个网络设备都做模板,添加item......那就该废了,于是迫于压力今天来测试使 ...

  2. Spring MVC 底层原理

    参考博客:http://www.cnblogs.com/xiaoxi/p/6164383.html Spring MVC处理的流程: 具体执行步骤如下: 1 首先用户发送请求给前端控制器,前端控制器根 ...

  3. Git强制拉取覆盖本地 Pull force

    git fetch --all git reset --hard origin/master git pull 单条执行 git fetch --all && git reset -- ...

  4. json 拖拽

    1.梳理知识点 1.事件对象   e || event  2.事件对象的属性      鼠标事件对象 : 坐标属性 :  clientX  clientY  pageX  pageY   offset ...

  5. ORM 框架简介

    对象-关系映射(Object/Relation Mapping,简称ORM),是随着面向对象的软件开发方法发展而产生的.面向对象的开发方法是当今企业级应用开发环境中的主流开发方法,关系数据库是企业级应 ...

  6. uva-705-深搜

    题意,就是根据斜线组成的迷宫,判断能够组成多少个闭环. 解法: 放大俩倍或者三倍 俩倍 \     ------->10 01 三倍 \ ------->100 010 001 然后深搜, ...

  7. 8.rem适配

    <!DOCTYPE html> <!--lang="en" : 英语 :声明当前页面的语言类型.--> <html lang="en&quo ...

  8. linux 基本。。

    一. 将磁盘分区挂载为只读 这一步很重要,并且在误删除文件后应尽快将磁盘挂载为只读.越早进行,恢复的成功机率就越大. 1.  查看被删除文件位于哪个分区 [root@localhost  ~]# mo ...

  9. Linux开机挂载windows共享文件夹

    https://blog.csdn.net/zhaogang1993/article/details/79573271  (可行) 命令: mount -t cifs -o username=&quo ...

  10. ABAP-ITS Mobile

    ITS Mobile是14年开发EWM项目时用到的技术方案,本文主要记录下ITS Mobile的整个实现过程. 1.ITS Mobile介绍 ITS Mobile:Internet Transacti ...