迷宫



分析



时间复杂度里的n,m写反了。

出题人很有举一反三的精神。

我的代码常数巨大,加了各种优化后开O3最慢点都要0.9s。

const int INF=0x3f3f3f3f;

const int MAXN=2e5+7;
int n,m;
int maze[6][MAXN]; struct node
{
int dis[6][6]; il node()
{
memset(dis,0x3f,sizeof dis);
} il int*operator[](rg const int&x)
{
return dis[x];
} il node operator+(rg const node&rhs)const
{
rg node res;
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=n;++j)
for(rg int k=1;k<=n;++k)
res[i][j]=min(res[i][j],dis[i][k]+rhs.dis[k][j]+1);
return res;
}
}; int ql,qr;
struct SegTree
{
node data[MAXN<<2];
int L[MAXN<<2],R[MAXN<<2];
#define lson (now<<1)
#define rson (now<<1|1)
il void build(rg int now,rg int l,rg int r)
{
L[now]=l,R[now]=r;
if(l==r)
{
for(rg int i=1;i<=n;++i)
for(rg int j=i;j<=n;++j)
{
if(maze[j][l])
data[now][i][j]=data[now][j][i]=j-i;
else
break;
}
return;
}
rg int mid=(l+r)>>1;
build(lson,l,mid);
build(rson,mid+1,r);
data[now]=data[lson]+data[rson];
} il void change(rg int now)
{
if(L[now]==R[now])
{
memset(data[now].dis,0x3f,sizeof data[now].dis);
for(rg int i=1;i<=n;++i)
for(rg int j=i;j<=n;++j)
{
if(maze[j][L[now]])
data[now][i][j]=data[now][j][i]=j-i;
else
break;
}
return;
}
rg int mid=(L[now]+R[now])>>1;
if(ql<=mid)
change(lson);
else
change(rson);
data[now]=data[lson]+data[rson];
} il node qmin(rg int now)
{
if(ql<=L[now]&&R[now]<=qr)
return data[now];
rg int mid=(L[now]+R[now])>>1;
if(qr<=mid)
return qmin(lson);
if(ql>=mid+1)
return qmin(rson);
return qmin(lson)+qmin(rson);
}
}T; int main()
{
freopen("maze.in","r",stdin);
freopen("maze.out","w",stdout);
int q;
n=read(),m=read(),q=read();
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=m;++j)
maze[i][j]=read();
T.build(1,1,m);
while(q--)
{
static int opt,a,b,c,d;
opt=read();
if(opt==1)
{
a=read(),b=read();
maze[a][b]^=1;
ql=b;
T.change(1);
}
else
{
a=read(),b=read(),c=read(),d=read();
ql=b,qr=d;
rg int x=T.qmin(1)[a][c];
printf("%d\n",x<INF?x:-1);
}
}
// fclose(stdin);
// fclose(stdout);
return 0;
}

std的写法很优,不开O3都能0.9s。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define rg register
#define N 1<<19
#define INF 0x3f3f3f3f
char ch;void re(rg int& x)
{
while(ch=getchar(),ch<'!');x=ch-48;
while(ch=getchar(),ch>'!')x=x*10+ch-48;
}
using namespace std;
int n,m,q,l[N],r[N],p[6][N];
struct node
{
int dis[6][6];
node(){memset(dis,INF,sizeof dis);}
node operator + (const node& a)const
{
rg node tmp;
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=n;++j)
for(rg int k=1;k<=n;++k)
tmp.dis[i][j]=min(tmp.dis[i][j],dis[i][k]+a.dis[k][j]+1);
return tmp;
}
}data[N];
void build(rg int k,rg int a,rg int b)
{
l[k]=a,r[k]=b;
if(a == b)
{
for(rg int i=1;i<=n;++i)
for(rg int j=i;j<=n;++j)
if(p[j][a])
data[k].dis[i][j]=data[k].dis[j][i]=j-i;
else break;
return;
}
build(k<<1,a,a+b>>1);
build(k<<1|1,(a+b>>1)+1,b);
data[k]=data[k<<1]+data[k<<1|1];
}
void change(rg int k,rg int a)
{
if(l[k] == r[k])
{
memset(data[k].dis,INF,sizeof data[k].dis);
for(rg int i=1;i<=n;++i)
for(rg int j=i;j<=n;++j)
if(p[j][a])
data[k].dis[i][j]=data[k].dis[j][i]=j-i;
else break;
return;
}
if(a <= l[k]+r[k]>>1)change(k<<1,a);
else change(k<<1|1,a);
data[k]=data[k<<1]+data[k<<1|1];
}
node solve(rg int k,rg int a,rg int b)
{
if(a<=l[k] && b>=r[k])return data[k];
rg int mid=l[k]+r[k]>>1;
if(b<=mid)return solve(k<<1,a,b);
else if(a>mid)return solve(k<<1|1,a,b);
else return solve(k<<1,a,b)+solve(k<<1|1,a,b);
}
int main()
{
freopen("maze.in","r",stdin);
freopen("maze.out","w",stdout);
re(n),re(m),re(q);
for(rg int i=1;i<=n;++i)
for(rg int j=1;j<=m;++j)
re(p[i][j]);
build(1,1,m);
rg int opt,a,b,c,d;
while(q--)
{
re(opt),re(a),re(b);
if(opt == 1)
p[a][b]^=1,change(1,b);
else
{
re(c),re(d);
rg int x=solve(1,b,d).dis[a][c];
printf("%d\n",x<INF?x:-1);
}
}
}

Maze 2D

The last product of the R2 company in the 2D games' field is a new revolutionary algorithm of searching for the shortest path in a \(2 × n\) maze.

Imagine a maze that looks like a \(2 × n\) rectangle, divided into unit squares. Each unit square is either an empty cell or an obstacle. In one unit of time, a person can move from an empty cell of the maze to any side-adjacent empty cell. The shortest path problem is formulated as follows. Given two free maze cells, you need to determine the minimum time required to go from one cell to the other.

Unfortunately, the developed algorithm works well for only one request for finding the shortest path, in practice such requests occur quite often. You, as the chief R2 programmer, are commissioned to optimize the algorithm to find the shortest path. Write a program that will effectively respond to multiple requests to find the shortest path in a \(2 × n\) maze.

\(n,m \leq 2 \cdot 10^5\)

分析

考虑线段树,维护区间[l,r]内,四个角两两之间的距离。

  1. \(d_0\) 左上到右上
  2. \(d_1\) 左上到右下
  3. \(d_2\) 左下到右上
  4. \(d_3\) 左下到右下

合并时\(d_0=\min\{lson.d_0+rson.d_0,lson.d_1+rson.d_2\}+1\),其他同理。

时间复杂度\(O(n \log n + m \log n)\)

const int INF=0x7fffffff;

const int MAXN=2e5+7;
int n;
char maze[3][MAXN]; int ql,qr;
struct node
{
ll d[4]; ll&operator[](const int&x)
{
return d[x];
} node operator+(node rhs)
{
node res;
res[0]=min(d[0]+rhs[0],d[1]+rhs[2])+1;
res[1]=min(d[0]+rhs[1],d[1]+rhs[3])+1;
res[2]=min(d[2]+rhs[0],d[3]+rhs[2])+1;
res[3]=min(d[2]+rhs[1],d[3]+rhs[3])+1;
return res;
}
}; struct SegTree
{
node st[MAXN<<2];
#define lson (now<<1)
#define rson (now<<1|1)
void build(int now,int l,int r)
{
if(l==r)
{
int x=(maze[1][l]=='.'),y=(maze[2][l]=='.');
st[now][0]=x?0:2*n;
st[now][1]=st[now][2]=x&&y?1:2*n;
st[now][3]=y?0:2*n;
return;
}
int mid=(l+r)>>1;
build(lson,l,mid);
build(rson,mid+1,r);
st[now]=st[lson]+st[rson];
} node qmin(int now,int l,int r)
{
/* cerr<<"qmin "<<now<<" "<<l<<" -> "<<r<<endl;
if(now==0)
system("pause");*/
if(ql<=l&&r<=qr)
return st[now];
int mid=(l+r)>>1;
if(qr<=mid)
return qmin(lson,l,mid);
if(ql>=mid+1)
return qmin(rson,mid+1,r);
return qmin(lson,l,mid)+qmin(rson,mid+1,r);
}
}T; int main()
{
// freopen("CF413E.in","r",stdin);
// freopen(".out","w",stdout);
int m;
read(n);read(m);
scanf("%s",maze[1]+1);
scanf("%s",maze[2]+1);
/* cerr<<"maze="<<endl;
cerr<<(maze[1]+1)<<endl;
cerr<<(maze[2]+1)<<endl;*/
T.build(1,1,n);
while(m--)
{
int u,v;
read(u);read(v);
if((u-1)%n+1>(v-1)%n+1)
swap(u,v);
// cerr<<"u="<<u<<" v="<<v<<endl;
int x1=(u>n)+1,x2=(v>n)+1;
ql=u-(x1-1)*n,qr=v-(x2-1)*n; // edit 1
// cerr<<"("<<x1<<" , "<<ql<<") -> ("<<x2<<" , "<<qr<<")"<<endl;
node ans=T.qmin(1,1,n);
// cerr<<"d="<<((x1-1)<<1|(x2-1))<<endl;
if(ans[(x1-1)<<1|(x2-1)]<2*n)
printf("%lld\n",ans[(x1-1)<<1|(x2-1)]);
else
puts("-1");
}
// fclose(stdin);
// fclose(stdout);
return 0;
}

考虑边界的时候base0和base1混用导致主函数代码很丑,将就着看。

注意给路径不通赋值时如果赋成2n要开long long

test20181005 迷宫的更多相关文章

  1. C语言动态走迷宫

    曾经用C语言做过的动态走迷宫程序,先分享代码如下: 代码如下: //头文件 #include<stdio.h> #include<windows.h>//Sleep(500)函 ...

  2. POJ 2251 Dungeon Master(3D迷宫 bfs)

    传送门 Dungeon Master Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28416   Accepted: 11 ...

  3. BFS_Maze_求解迷宫最短路径

    /* 10 10 #.######.# ......#..# .#.##.##.# .#........ ##.##.#### ....#....# .#######.# ....#..... .## ...

  4. 【刷题笔记】I'm stuck! (迷宫)-----java方案

    题目描述 : 给定一个R行C列的地图,地图的每一个方格可能是'#', '+', '-', '|', '.', 'S', 'T'七个字符中的一个,分别表示如下意思: '#': 任何时候玩家都不能移动到此 ...

  5. canvas实例 ---- 制作简易迷宫(一)

    这个系列分为两部分,第一部分为迷宫的生成及操作,第二部分为自动寻路算法. 我们先看效果: See the Pen QGKBjm by fanyipin (@fanyipin) on CodePen. ...

  6. HTML 迷宫

    今天补个遗,将很久以前研究 HTML5 的时候写的生成迷宫.迷宫寻路程序整理出来. 下载链接在文章最后. 简介 为什么要做这个 HTML5 迷宫程序?因为我喜欢.我愿意.也是向老程序员学习(见第5节) ...

  7. 洛谷P1605 迷宫——S.B.S.

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  8. Java迷宫游戏

    缘起: 去年(大三上学期)比较喜欢写小游戏,于是想试着写个迷宫试一下. 程序效果: 按下空格显示路径: 思考过程: 迷宫由一个一个格子组成,要求从入口到出口只有一条路径. 想了一下各种数据结构,似乎树 ...

  9. K - 迷宫问题

    /*定义一个二维数组:  int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, ...

随机推荐

  1. python-day7-数字类型的内置方法

    #=====>part1:数字类型#掌握:int,float#了解:Long(在python2中才有),complex# num=10# num=int(10)# print(type(num) ...

  2. dwz tree组件 取得所选择的值

    DWZ的树结构是按<ul>,<li>的嵌套格式构成,最顶级的<ul>以class=”tree”标识. treeFolder, treeCheck, expand|c ...

  3. kill prefix extra,endo out 1

      1●extra 超过外面的, 以外的,外面 的   2●endo   内部  

  4. chrome 扩展插件提示

    --force-fieldtrials=ExtensionDeveloperModeWarning/None/ ogfahjpoemnbbnlignjbfinfnahmfdlk ahjaciijnoi ...

  5. winRAR显示树树目录

    这样 比较方便

  6. 069——VUE中vuex之使用getters高效获取购物车商品总价

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. jsp jsp的基本语法

    jsp模板元素  jsp页面中的HTML 内容称为JSP模板元素  jsp模板元素定义了网页的基本骨架,即定义了页面结构和外观 jsp表达式   jsp脚本表达式用于将程序数据输出到客户端   语法& ...

  8. learning uboot part command

    => part --helppart - disk partition related commands Usage:part uuid <interface> <dev> ...

  9. Django(三)url和返回

    location 最后一个文件夹名就是project名,我用了Django_Plan. Application 是自动加入的APP名字,我用了Plan 编辑Django_Plan\Django_Pla ...

  10. 第一章连通性问题-----algorithm in C 读书笔记

    首先不得不吐槽一下翻译的质量,霍红卫....你给我站出来,不打死你,只想问你一下,你当年四级过了吗? 问题描述 输入两个整数,代表两个节点,如果这两个整数没有建立连接(这包括直接连接和通过其他节点连接 ...