计算给定日期是星期几,好象是编程都会遇到的问题,最近论坛里也有人提到这个问题,并给出了一个公式:   
          W=   (d+2*m+3*(m+1)/5+y+y/4-y/100+y/400)   mod   7   
(要求将1、2月当作上一年的13、14月来计算)   
    
去看了看这个公式的原帖
http://blog.csdn.net/ycrao/archive/2000/11/24/3825.aspx   
其讲述的过程并不清楚,便想怎样自己推导出一个公式来,花了几个小时,总算是弄出来了,结果跟上面的公式一样:)   
======================================================================   
    
  下面我们完全按自己的思路由简单到复杂一步步进行推导……   
    
  推导之前,先作两项规定:   
  ①用   y,   m,   d,   w   分别表示   年   月   日   星期(w=0-6   代表星期日-星期六   
  ②我们从   公元0年1月1日星期日   开始   
    
    
  一、只考虑最开始的   7   天,即   d   =   1---7   变换到   w   =   0---6   
          很直观的得到:   
          w   =   d-1   
    
  二、扩展到整个1月份   
          模7的概念大家都知道了,也没什么好多说的。不过也可以从我们平常用的日历中看出来,在周历里边每列都是一个按7增长的等差数列,如1、8、15、22的星期都是相同的。所以得到整个1月的公式如下:   
          w   =   (d-1)   %   7     ---------   公式⑴   
    
  三、按年扩展   
          由于按月扩展比较麻烦,所以将年扩展放在前面说   
    
          ①   我们不考虑闰年,假设每一年都是   365   天。由于365是7的52倍多1天,所以每一年的第一天和最后一天星期是相同的。   
          也就是说下一年的第一天与上一年的第一天星期滞后一天。这是个重要的结论,每过一年,公式⑴会有一天的误差,由于我们是从0年开始的,所以只须要简单的加上年就可以修正扩展年引起的误差,得到公式如下:   
          w   =   (d-1   +   y)   %   7     
    
          ②   将闰年考虑进去   
          每个闰年会多出一天,会使后面的年份产生一天的误差。如我们要计算2005年1月1日星期几,就要考虑前面的已经过的2004年中有多少个闰年,将这个误差加上就可以正确的计算了。   
          根据闰年的定义(能被4整但不能被100整除或能被400整),得到计算闰年的个数的算式:y/4   -   y/100   +   y/400。   
          由于我们要计算的是当前要计算的年之前的闰年数,所以要将年减1,得到了如下的公式:   
          w   =   [d-1+y   +   (y-1)/4-(y-1)/100+(y-1)/400]   %   7   -----公式⑵   
    
          现在,我们得到了按年扩展的公式⑵,用这个公式可以计算任一年的1月份的星期   
    
  四、扩展到其它月   
          考虑这个问题颇费了一翻脑筋,后来还是按前面的方法大胆假才找到突破口。   
    
          ①现在我们假设每个月都是28天,且不考虑闰年   
          有了这个假设,计算星期就太简单了,因为28正好是7的整数倍,每个月的星期都是一样的,公式⑵对任一个月都适用   :)   
    
          ②但假设终究是假设,首先1月就不是28天,这将会造成2月份的计算误差。1月份比28天要多出3天,就是说公式⑵的基础上,2月份的星期应该推后3天。   
          而对3月份来说,推后也是3天(2月正好28天,对3月的计算没有影响)。   
          依此类推,每个月的计算要将前面几个月的累计误差加上。   
          要注意的是误差只影响后面月的计算,因为12月已是最后一个月,所以不用考虑12月的误差天数,同理,1月份的误差天数是0,因为前面没有月份影响它。   
    
          由此,想到建立一个误差表来修正每个月的计算。   
  ==================================================   
  月     误差   累计     模7   
  1       3         0           0   
  2       0         3           3   
  3       3         3           3   
  4       2         6           6   
  5       3         8           1   
  6       2         11          4   
  7       3         13          6   
  8       3         16          2   
  9       2         19          5   
  10      3         21          0   
  11      2         24          3   
  12      -         26          5   
          (闰年时2月会有一天的误差,但我们现在不考虑)   
  ==================================================   
    
          我们将最后的误差表用一个数组存放   
          在公式⑵的基础上可以得到扩展到其它月的公式   
    
          e[]   =   {0,3,3,6,1,4,6,2,5,0,3,5}   
          w   =   [d-1+y   +   e[m-1]   +   (y-1)/4-(y-1)/100+(y-1)/400]   %   7   --公式⑶   
    
          ③上面的误差表我们没有考虑闰年,如果是闰年,2月会一天的误差,会对后面的3-12月的计算产生影响,对此,我们暂时在编程时来修正这种情况,增加的限定条件是如果当年是闰年,且计算的月在2月以后,需要加上一天的误差。大概代码是这样的:   
            
          w   =   (d-1   +   y   +   e[m-1]   +   (y-1)/4   -   (y-1)/100   +   (y-1)/400);   
          if(m>2   &&   (y%4==0   &&   y%100!=0   ||   y%400==0)   &&   y!=0)   
                  ++w;   
          w   %=   7;   
            
          现在,已经可以正确的计算任一天的星期了。   
          注意:0年不是闰年,虽然现在大都不用这个条件,但我们因从公元0年开始计算,所以这个条件是不能少的。   
    
          ④   改进   
          公式⑶中,计算闰年数的子项   (y-1)/4-(y-1)/100+(y-1)/400   没有包含当年,如果将当年包含进去,则实现了如果当年是闰年,w   自动加1。   
          由此带来的影响是如果当年是闰年,1,2月份的计算会多一天误差,我们同样在编程时修正。则代码如下   
            
          w   =   (d-1   +   y   +   e[m-1]   +   y/4   -   y/100   +   y/400);   ----   公式⑷   
          if(m<3   &&   (y%4==0   &&   y%100!=0   ||   y%400==0)   &&   y!=0)   
                  --w;   
          w   %=   7;   
            
          与前一段代码相比,我们简化了   w   的计算部分。   
          实际上还可以进一步将常数   -1   合并到误差表中,但我们暂时先不这样做。   
            
          至此,我们得到了一个阶段性的算法,可以计算任一天的星期了。   
    
  public   class   Week   {   
          public   static   void   main(String[]   args){   
                  int   y   =   2005;   
                  int   m   =   4;   
                  int   d   =   25;   
                    
                  int   e[]   =   new   int[]{0,3,3,6,1,4,6,2,5,0,3,5};   
                  int   w   =   (d-1+e[m-1]+y+(y>>2)-y/100+y/400);   
                  if(m<3   &&   ((y&3)==0   &&   y%100!=0   ||   y%400==0)   &&   y!=0){   
                          --w;   
                  }   
                  w   %=   7;   
                    
                  System.out.println(w);   
          }   
  }
五、简化   
          现在我们推导出了自己的计算星期的算法了,但还不能称之为公式。   
          所谓公式,应该给定年月日后可以手工算出星期几的,但我们现在的算法需要记住一个误差表才能进行计算,所以只能称为一种算法,还不是公式。   
          下面,我们试图消掉这个误差表……   
    
          =============================   
          消除闰年判断的条件表达式   
          =============================   
    
          由于闰年在2月份产生的误差,影响的是后面的月份计算。如果2月是排在一年的最后的话,它就不能对其它月份的计算产生影响了。可能已经有人联想到了文章开头的公式中为什么1,2月转换为上年的13,14月计算了吧   :)   
    
          就是这个思想了,我们也将1,2月当作上一年的13,14月来看待。   
          由此会产生两个问题需要解决:   
          1>一年的第一天是3月1日了,我们要对   w   的计算公式重新推导   
          2>误差表也发生了变化,需要得新计算   
    
          ①推导   w   计算式   
              1>   用前面的算法算出   0年3月1日是星期3   
                    前7天,   d   =   1---7     ===>     w   =   3----2   
                    得到   w   =   (d+2)   %   7   
                    此式同样适用于整个三月份   
              2>   扩展到每一年的三月份   
                    [d   +   2   +   y   +   (y-1)/4   -   (y-1)/100   +   (y-1)/400]   %   7   
    
          ②误差表   
  ==================================================   
  月     误差   累计     模7   
  3       3         0           0   
  4       2         3           3   
  5       3         5           5   
  6       2         8           1   
  7       3         10          3   
  8       3         13          6   
  9       2         16          2   
  10      3         18          4   
  11      2         21          0   
  12      3         23          2   
  13      3         26          5   
  14      -         29          1   
  ==================================================   
    
          ③得到扩展到其它月的公式   
          e[]   =   {0,3,5,1,3,6,2,4,0,2,5,1}   
          w   =   [d+2   +   e[m-3]   +y+(y-1)/4-(y-1)/100+(y-1)/400]   %   7   
          (3   <=   m   <=   14)   
    
          我们还是将   y-1   的式子进行简化   
          w   =   [d+2   +   e[m-3]   +y+y/4-y/100+y/400]   %   7   
          (3   <=   m   <=   14)   
    
          这个式子如果当年是闰年,会告成多1的误差   
          但我们将1,2月变换到上一年的13,14月,年份要减1,所以这个误差会自动消除,所以得到下面的算法:   
    
          int   e[]   =   new   int[]{0,3,5,1,3,6,2,4,0,2,5,1};   
          if(m   <   3)   {   
                  m   +=   12;   
                  --y;   
          }   
          int   w   =   (d+2   +   e[m-3]   +y+(y/4)-y/100+y/400)   %   7;   -----公式⑸   
    
          我们可以看到公式⑸与公式⑷几乎是一样的,仅仅是误差天和一个常数的差别   
          常数的区别是由起始日期的星期不同引起的,0年1月1日星期日,0年3日1日星期三,有三天的差别,所以常数也从   -1   变成了   2。   
    
          现在,我们成功的消除了繁琐的闰年条件判断。   
    
    
          =============================   
          消除误差表   
          =============================   
          假如存在一种m到e的函数映射关系,使得   
                  e[m-3]   =   f(m)   
          则我们就可以用   f(m)   取代公式⑸中的子项   e[m-3],也就消除了误差表。   
    
          由于误差表只有12个项,且每一项都可以加减   7n   进行调整,这个函数关系是可以拼凑出来的。但是这个过程可能是极其枯燥无味的,我现在不想自己去推导它,我要利用前人的成果。所谓前人栽树,后人乘凉嘛   :)   
    
          文章开头开出的公式中的   2*m+3*(m+1)/5   这个子项引起了我的兴趣   
    
          经过多次试试验,我运行下面的代码   
    
          for(m=1;   m<=14;   ++m)   
                  System.out.print((-1+2*m+3*(m+1)/5)%7   +   "   ");   
          System.out.println();   
    
          天哪,输出结果与我的误差表不谋而合,成功了,哈哈   
    
          2   4   0   3   5   1   3   6   2   4   0   2   5   1   
          Press   any   key   to   continue...   
    
          上面就是输出结果,看它后面的12项,与我的误差表完全吻合!!!   
    
          现在就简单的,将   f(m)   =   -1   +   2*m   +   3*(m+1)/5   代入公式⑸,得到   
    
          w   =   (d+1+2*m+3*(m+1)/5+y+(y/4)-y/100+y/400)   %   7   ----公式6   
          约束条件:   m=1,m=2   时   m=m+12,y=y-1;   
    
          现在,我们得到了通用的计算星期的公式,并且“完全”是按自己的思想推导出来的(那个函数映射关系不算),只要理解了这个推导的步骤,即使有一天忘记了这个公式,也可以重新推导出来!   
    
          可能有人会注意到公式⑹与文章开头的公式相差一个常数   1,这是因为原公式使用数字0--6表示星期一到星期日,而我用0--6表示星期日到星期六。实际上是一样,你可以改成任意你喜欢的表示方法,只需改变这个常数就可以了。   
    
    
  六、验证公式的正确性。   
    
          一个月中的日期是连续的,只要有一天对的,模7的关系就不会错,所以一个月中只须验证一天就可以了,一天需要验12天。由于扩展到年和月只跟是否闰年有关系,就是说至少要验证一个平年和一个闰年,也就是最少得验证24次。   
          我选择了   2005   年和   2008   年,验证每个月的1号。   
  测试代码如下:   
    
  class   test   {   
          public   int   GetWeek(int   y,   int   m,   int   d)   {   
                  if(m<3)   {   
                          m   +=   12;   
                          --y;   
                  }   
                  int   w   =   (d+1+2*m+3*(m+1)/5+y+(y>>2)-y/100+y/400)   %   7;   
                  return   w;   
          }   
  }   
    
  public   class   Week   {   
          public   static   void   main(String[]   args){   
                  int   y   =   2005;   
                  int   m   =   1;   
                  int   d   =   1;   
                    
                  test   t   =   new   test();   
                  String   week[]   =   new   String[]{   
                          "星期日","星期一","星期二","星期三","星期四","星期五","星期六"   
                  };   
                    
                  for(y=2005;   y<=2008;   y+=3)   {   
                          for(m=1;   m<=12;   ++m)   {   
                                  String   str   =   y   +   "-"   +   m   +   "-"   +   d   +   "\t"   +   week[t.GetWeek(y,m,d)];   
                                  System.out.println(str);   
                          }   
                  }   
          }   
  }   
  查万年历,检查程序的输出,完全正确。   
    
  七、后话   
    
          我们这个公式的推导是以0年3月1日为基础的,对该日以后的日期都是可以计算的。但是否可以扩展到公元前(1,2已属于公元前1年的13,14月了)呢?   
    
          虽然我对0年1月和2月、以及公元前1年(令y=-1)的12月作了验证是正确的,但我在推导这个公式时并未想到将其扩展到公元前,所以上面的推导过程没有足够理论依据可以证明其适用于公元前。(负数的取模在不同的编译器如C++中好象处理并不完全正确)。   
    
          另外一有点是对于0年是否存在的争议,一种折中的说法是0年存在,但什么也没有发生,其持续时间为0。还有在罗马的格利戈里历法中有10天是不存的(1582年10月5日至14持续时间为0),英国的历法中有11天(1752年9月3日至13日)是不存在的。感兴趣的朋友可以看看这里:   
          http://www.whtv.com.cn/zhuanti/celebration/when/wz16.htm   
也可以参考我的blog里的文章:
   http://www.cnblogs.com/mq0036/p/3534186.html
    
          但是我们做的是数字计算,不管那一天是否存在,持续的时间是24小时还是23小时甚至是0小时,只要那个号码存在,就有一个星期与之对应。所以这个公式仍然是适用的。   
          如果要计算的是时间段,就必须考虑这个问题了。

出处:http://wenku.baidu.com/link?url=HUyfxNpxM8m2yC6vyILIlj2ghuAEblyXcY9yum3FFH6B5d-YOINc6yg1k-8LCV46ALHW-2aoShYaJkO-z_ifvRrHNRkdZOqOfeLexCe48NK

根据日期计算星期几----蔡勒(Zeller)公式推导的更多相关文章

  1. 蔡勒(Zeller)公式--黑色星期五

    求某年某月某日是周几; 蔡勒(Zeller)公式: w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1 ;y是年的后两位:c是世纪数-1(年的前两位):m是月份,大于等于3,小于等 ...

  2. 编写Java程序随机输入日期计算星期几,打印任意一年的日历

    需求说明: 随机输入日期计算星期几,打印任意一年的日历 已知,1900年1月1日是星期1,用户随机输入年月日,计算星期几 实现思路: 一.知道1900年1月1日为星期一,求输入的年份月份与1900年1 ...

  3. 蔡勒(Zeller)公式及其推导:快速将任意日期转换为星期数

    0. 本文的初衷及蔡勒公式的用处 前一段时间,我在准备北邮计算机考研复试的时候,做了几道与日期计算相关的题目,在这个过程中我接触到了蔡勒公式.先简单的介绍一下蔡勒公式是干什么用的. 我们有时候会遇到这 ...

  4. 蔡勒(Zeller)公式

    蔡勒(Zeller)公式,是一个计算星期的公式,随便给一个日期,就能用这个公式推算出是星期几. W =[ [c/4] - 2c + y + [y/4] + [13 * (m+1) / 5] + d - ...

  5. C#实现根据日期计算星期

    /// <summary> /// 根据日期返回 星期(返回结果为英文) /// </summary> /// <param name="date"& ...

  6. oracle根据日期计算星期几

    工作中用到的,在存储过程中的语句,简单记下: /** 判断输入日期是星期几 */ select decode(to_char(to_date(iv_date,'yyyy-mm-dd'), 'day') ...

  7. C# 根据日期计算星期几

    region 根据年月日计算星期几(Label2.Text=CaculateWeekDay(,,);) /// <summary> /// 根据年月日计算星期几(Label2.Text=C ...

  8. Gym 101206L Daylight Saving Time 根据年月日计算星期

    题意: [3月的第二个周日02:00:00 , 3月的第二个周日03:00:00) 这个区间都不是PST或PDT,[11月的第一个周日01:00:00 , 11月的第一个周日02:00:00) 这个区 ...

  9. c语言详解  蔡勒(Zeller)公式计算某一天是星期几  极其方便

    —— 蔡勒(Zeller)公式 ,小于等于14,即在蔡勒公式中,某年的1.2月要看作上一年的13.14月来计算,比如2003年1月1日要看作2002年的13月1日来计算):d:日:[ ]代表取整,即只 ...

随机推荐

  1. hdu2955(概率DP)

    The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually g ...

  2. UVA-11584 Partitioning by Palindromes (简单线性DP)

    题目大意:给一个全是小写字母的字符串,判断最少可分为几个回文子序列.如:“aaadbccb” 最少能分为 “aaa” “d” “bccb” 共三个回文子序列,又如 “aaa” 最少能分为 1 个回文子 ...

  3. Oracle DISTINCT A 排序问题(转)

    请问Oracle 中有ID,A栏要怎么读出栏的不重复值,并且用ID来排序,請大家帮帮忙? 解决方案: ID | A 1 | x 2 | y 3 | x A栏的不重复值: x, y 但用ID來排序时 x ...

  4. yum安装docker报 No package docker available错误

    解决方案: yum install epel-release 然后再安装 CentOS6 yum install http://mirrors.yun-idc.com/epel/6/i386/epel ...

  5. Intel daal4py demo运行过程

    daal安装(记得先安装anaconda): git clone https://github.com/IntelPython/daal4py.git cd daal4py conda create ...

  6. CCF 高速公路 tarjan求强连通分量

    问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...

  7. ArrayList与List<T>笔记

    ArrayList与List<T>笔记 ArrayList是在System.Collections命名空间的一个类, 通过Add的方法添加一个项, 当进到这个类的元数据时, 可以看到这个方 ...

  8. 手把手教你搭建一个Elasticsearch集群

    一.为何要搭建 Elasticsearch 集群 凡事都要讲究个为什么.在搭建集群之前,我们首先先问一句,为什么我们需要搭建集群?它有什么优势呢? (1)高可用性 Elasticsearch 作为一个 ...

  9. 【重大更新】DevExpress v17.2新版亮点—Bootstrap篇(二)

    用户界面套包DevExpress v17.2日前终于正式发布,本站将以连载的形式为大家介绍各版本新增内容.本文将介绍了Bootstrap Controls v17.2 的CardView.Charts ...

  10. easyui datagrid 诡异的无法显示问题

    举个应用场景的例子来说明: 在采购单的编辑页面,上方为采购单自身的属性信息,下方使用tabs控件,加入两个tab页,分别为采购明细列表(DataGrid)和审核记录列表(DataGrid),即一个主业 ...