ISSCC 2017论文导读 Session 14:A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Pro
A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector
单位:KAIST(韩国科学技术院)——ISSCC上大神级的机构···
DNN的加速器,面向不同的应用有着不同的能效需求:0.1W~1W,1W~5W等,不同的应用场景需要不同的架构。但是在0.1w以下的空间,目前成熟的工作还不多。本篇是一款面向Always-on 和IoT的0.62mW的人脸识别系统,面向IoT等极低功耗需求的计算场景。分为两个部分:人脸检测和人脸识别。下面主要讲一讲人脸识别部分的CNN引擎。
下图想说的是用分布式内存架构比集中式的会更好:
在卷积中,采用一个2D转两次1D的trick,比如5*5的卷积,先做一次5 *1再做一次1 *5卷积,可以得到一样大小的输出;结果是计算参数减少了,更重要的是计算量显著减少。(这个trick在算法中很容易想,但是在硬件中直接做效率不一定高,所以也就有了后面的T-SRAM的设计,可以一次取出一列的数据)
虽然计算减少了,但是精度损失比较少:
对于SF-CONV的访存:垂直方向的图像滤波效率很低,同时增加了4.7x的翻转率。基于此,提出了T-SRAM。T-SRAM支持两种访问方式:V-WD和V-SA是倒序访存,输出的是垂直方向的1D向量;而H-WD和H-SA是顺序访存,输出的是水平方向的1D向量。
用了TSRAM以后:
具体电路设计细节可以参考paper,我也是外行。
芯片版图:65nm工艺下,FD部分的CIS处理单元为3.3mmx3.36mm(320×240的阵列,支持哈尔检测的芯片,采用模拟存储);FR部分的CNNP单元为4mmx4mm(4×4的PE阵列,使用T-SRAM作为本地存储)。
V和F的调整情况:
SF-CONV的精度损失在1%以内,整体精确度达到97%(CNN网络,LFW数据)
总结:面向Always-on 和IoT的0.62mW的人脸识别系统[1]
1、超级功耗的人脸识别SoC(采用CIS和CNN实现)
2、数模混合的哈尔特征人脸检测电路
3、卷积分离的近似计算技术
4、支持水平、垂直数据读取的新结构T-SRAM
5、采用电压、频率可调的NVT实现
参考资料
[1] https://reconfigdeeplearning.com/2017/02/09/isscc-2017-session-14-slides14-6/
[2] A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector
ISSCC 2017论文导读 Session 14:A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Pro的更多相关文章
- ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...
- ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...
- ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm
ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Proce ...
- ISSCC 2017论文导读 Session 14 Deep Learning Processors,DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN
转载请注明,本文出自Bin的专栏http://blog.csdn.net/xbinworld,谢谢! DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Process ...
- ISSCC 2017论文导读 Session 14: A 28nm SoC with a 1.2GHz Prediction Sparse Deep-Neural-Network Engine
A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Erro ...
- ISSCC 2017论文导读 Session 14:A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight
A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Mem ...
- 论文翻译:2020_FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective functions
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式 ...
- ASPLOS'17论文导读——SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天 ...
- 论文翻译:2019_TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain
论文地址:TCNN:时域卷积神经网络用于实时语音增强 论文代码:https://github.com/LXP-Never/TCNN(非官方复现) 引用格式:Pandey A, Wang D L. TC ...
随机推荐
- Fire Game--FZU2150(bfs)
http://acm.fzu.edu.cn/problem.php?pid=2150 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=659 ...
- Java中String, StringBuilder和StringBuffer
Java中常用来处理字符串的类有三个: String, StringBuffer和StringBuilder. 区别 三者都继承自CharSequence接口, 首先说明三者间主要区别 String字 ...
- java动态加载
先贴个笔记,后续用得着再深究. package test; import java.io.File; import java.io.IOException; import java.lang.refl ...
- CentOS 7显卡驱动问题
CentOS 7 KDE桌面安装后有时会出现nouveau 驱动问题,导致系统不定时死机或者重启,那么这时只能禁用nouveau 1. 在配置文件中禁用nouveauvi /etc/modprobe. ...
- vscode主题配色
https://www.cnblogs.com/garvenc/p/vscode_customize_color_theme.html
- Pycharm自动换行
只对当前文件有效的操作是菜单栏->View -> Active Editor -> Use Soft Wraps. 要是想对所有文件都起到效果,就要在setting里面进行操作.Pe ...
- mysql python pymysql模块 增删改查 插入数据 介绍 commit() execute() executemany() 函数
import pymysql mysql_host = '192.168.0.106' port = 3306 mysql_user = 'root' mysql_pwd = ' encoding = ...
- 万恶之源 - Python基础知识补充
编码转换 编码回顾: 1. ASCII : 最早的编码. ⾥⾯有英⽂⼤写字⺟, ⼩写字⺟, 数字, ⼀些特殊字符. 没有中⽂, 8个01代码, 8个bit, 1个byte 2. GBK: 中⽂国标码, ...
- AngularJS 表达式 对象和数组
AngularJS 使用 表达式 把数据绑定到 HTML. AngularJS 表达式 AngularJS 表达式写在双大括号内:{{ expression }}. AngularJS 表达式把数据绑 ...
- [LeetCode] questions conclustion_BFS, DFS
BFS, DFS 的题目总结. Directed graph: Directed Graph Loop detection and if not have, path to print all pat ...