A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector

单位:KAIST(韩国科学技术院)——ISSCC上大神级的机构···

DNN的加速器,面向不同的应用有着不同的能效需求:0.1W~1W,1W~5W等,不同的应用场景需要不同的架构。但是在0.1w以下的空间,目前成熟的工作还不多。本篇是一款面向Always-on 和IoT的0.62mW的人脸识别系统,面向IoT等极低功耗需求的计算场景。分为两个部分:人脸检测和人脸识别。下面主要讲一讲人脸识别部分的CNN引擎。

下图想说的是用分布式内存架构比集中式的会更好:

在卷积中,采用一个2D转两次1D的trick,比如5*5的卷积,先做一次5 *1再做一次1 *5卷积,可以得到一样大小的输出;结果是计算参数减少了,更重要的是计算量显著减少。(这个trick在算法中很容易想,但是在硬件中直接做效率不一定高,所以也就有了后面的T-SRAM的设计,可以一次取出一列的数据)

虽然计算减少了,但是精度损失比较少:

对于SF-CONV的访存:垂直方向的图像滤波效率很低,同时增加了4.7x的翻转率。基于此,提出了T-SRAM。T-SRAM支持两种访问方式:V-WD和V-SA是倒序访存,输出的是垂直方向的1D向量;而H-WD和H-SA是顺序访存,输出的是水平方向的1D向量。

用了TSRAM以后:

具体电路设计细节可以参考paper,我也是外行。

芯片版图:65nm工艺下,FD部分的CIS处理单元为3.3mmx3.36mm(320×240的阵列,支持哈尔检测的芯片,采用模拟存储);FR部分的CNNP单元为4mmx4mm(4×4的PE阵列,使用T-SRAM作为本地存储)。

V和F的调整情况:

SF-CONV的精度损失在1%以内,整体精确度达到97%(CNN网络,LFW数据)

总结:面向Always-on 和IoT的0.62mW的人脸识别系统[1]

1、超级功耗的人脸识别SoC(采用CIS和CNN实现)

2、数模混合的哈尔特征人脸检测电路

3、卷积分离的近似计算技术

4、支持水平、垂直数据读取的新结构T-SRAM

5、采用电压、频率可调的NVT实现

参考资料

[1] https://reconfigdeeplearning.com/2017/02/09/isscc-2017-session-14-slides14-6/

[2] A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector

ISSCC 2017论文导读 Session 14:A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Pro的更多相关文章

  1. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  2. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  3. ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm

    ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Proce ...

  4. ISSCC 2017论文导读 Session 14 Deep Learning Processors,DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN

    转载请注明,本文出自Bin的专栏http://blog.csdn.net/xbinworld,谢谢! DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Process ...

  5. ISSCC 2017论文导读 Session 14: A 28nm SoC with a 1.2GHz Prediction Sparse Deep-Neural-Network Engine

    A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Erro ...

  6. ISSCC 2017论文导读 Session 14:A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight

    A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Mem ...

  7. 论文翻译:2020_FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective functions

    论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式 ...

  8. ASPLOS'17论文导读——SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing

    今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天 ...

  9. 论文翻译:2019_TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain

    论文地址:TCNN:时域卷积神经网络用于实时语音增强 论文代码:https://github.com/LXP-Never/TCNN(非官方复现) 引用格式:Pandey A, Wang D L. TC ...

随机推荐

  1. 洛谷P4436 游戏 [HNOI/AHOI2018]

    正解:拓扑排序 解题报告: 传送门! 首先不难想到可以把麻油锁的一段先直接缩成一个点,然后预处理每个点能到达的最左和最右节点,然后就能O(1)地查询辣 所以难点在于预处理 可以想到,对于它给定的关于锁 ...

  2. 正则表达式(二):Unicode诸问题上篇(转)

    原文:http://www.infoq.com/cn/news/2011/02/regular-expressions-unicode 关于正则表达式的文档很多,但大部分都是英文的,即便有中文的文档, ...

  3. dedecms调用副栏目文章怎么操作

    最近ytkah的网站进行改版,添加了一些新栏目,做更精准的着陆页,有些文章比较简短并且很早以前就发布过了,如果再添加这样的文档就有点重复了,于是就想着用文章副栏目的属性,可却调不出来,怎么办?查找官方 ...

  4. MSMQ研究

    开发过程记录如下: 1.   本机配置MSMQ ------控制面板-------启动或者关闭Windows功能----默认安装MSMQ即可 注意:本地安装后再VS中才能引用System.Messag ...

  5. react-native run-android error: unknown host service

    D:\rnworkspace\Hello>react-native run-android JS server already running.Running D:\Android\sdk/pl ...

  6. XPath轴

    XPath 轴翻译:Linyupark / 2006-03-24 The XML Example DocumentXML举例文档 We will use the following XML docum ...

  7. python——asyncio模块实现协程、异步编程

    我们都知道,现在的服务器开发对于IO调度的优先级控制权已经不再依靠系统,都希望采用协程的方式实现高效的并发任务,如js.lua等在异步协程方面都做的很强大. Python在3.4版本也加入了协程的概念 ...

  8. maven工程插件配置

    <build> <!-- 该级工程会加载插件,放在父工程里 --> <plugins> <!-- 资源文件拷贝插件 --> <plugin> ...

  9. dp训练

    根据这位大佬的https://www.cnblogs.com/Bunnycxk/p/7360183.html 题目链接:https://www.luogu.org/problemnew/show/P3 ...

  10. [参考资料] 80个Python经典资料(教程+源码+工具)汇总

    AD : 2018重磅地面课程<机器读心术之语音识别前沿实战特训营>,迈向人工智能新高度 [专题推荐]Python系列英文原版电子书 http://down.51cto.com/zt/10 ...