1. 暴力枚举

2. “聪明”枚举

3. 分治法

分:两个基本等长的子数组,分别求解T(n/2)

合:跨中心点的最大子数组合(枚举)O(n)

时间复杂度:O(n*logn)

 class Solution {
public:
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
int maxSubArray(vector<int> nums) {
// write your code here
int size = nums.size();
if (size == ) {
return nums[];
}
int *data = nums.data();
return helper(data, size);
}
int helper(int *data, int n) {
if ( n == ) {
return data[];
}
int mid = n >> ;
int ans = max(helper(data, mid), helper(data + mid, n - mid));
int now = data[mid - ], may = now;
for (int i = mid - ; i >= ; i--) {
may = max(may, now += data[i]);
}
now = may;
for (int i = mid; i < n; i++) {
may = max(may, now += data[i]);
}
return max(ans, may);
}
};

4. dp(不枚举子数组,枚举方案)

dp[i]表示以a[i]结尾的最大子数组的和

dp[i] = max(dp[i-1]+a[i], a[i])

  包含a[i-1]:dp[i-1]+a[i]

  不包含a[i-1]:a[i]

初值:dp[0] = a[0]

答案:最大的dp[0...n-1]

时间:O(n)

空间:O(n)

空间优化:dp[i]要存吗?

  endHere = max(endHere+a[i], a[i])

  answer = max(endHere, answer)

优化后的空间:O(1)

 class Solution {
public:
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
int maxSubArray(vector<int> nums) {
// write your code here
int size = nums.size();
if (size == ) {
return nums[];
}
vector<int> dp(size);
dp[] = nums[];
int ans = dp[];
for (int i=; i<size; i++) {
dp[i] = max(dp[i - ] + nums[i], nums[i]);
ans = max(ans, dp[i]);
}
return ans;
}
};

空间优化

 class Solution {
public:
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
int maxSubArray(vector<int> nums) {
// write your code here
int size = nums.size();
if (size == ) {
return nums[];
}
int endHere = nums[];
int ans = nums[];
for (int i=; i<size; i++) {
endHere = max(endHere + nums[i], nums[i]);
ans = max(ans, endHere);
}
return ans;
}
};

5. 另外一种线性枚举

定义:sum[i] = a[0] + a[1] + a[2] + ... + a[i]  i>=0

     sum[-1] = 0

则对0<=i<=j:

  a[i] + a[i+1] + ... + a[j] = sum[j] - sum[i-1]

我们就是要求这样一个最大值:

  对j我们可以求得当前的sum[j],取的i-1一定是之前最小的sum值,用一个变量记录sum的最小值

  时间:O(n)

  空间:O(1)

 class Solution {
public:
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
int maxSubArray(vector<int> nums) {
// write your code here
int size = nums.size();
if (size == ) {
return nums[];
}
int sum = nums[];
int minSum = min(, sum);
int ans = nums[];
for (int i = ; i < size; ++i) {
sum += nums[i];
ans = max(ans, sum - minSum);
minSum = min(minSum, sum);
}
return ans;
}
};

LintCode: Maximum Subarray的更多相关文章

  1. [LintCode] Maximum Subarray 最大子数组

    Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...

  2. Lintcode: Maximum Subarray III

    Given an array of integers and a number k, find k non-overlapping subarrays which have the largest s ...

  3. Lintcode: Maximum Subarray Difference

    Given an array with integers. Find two non-overlapping subarrays A and B, which |SUM(A) - SUM(B)| is ...

  4. Lintcode: Maximum Subarray II

    Given an array of integers, find two non-overlapping subarrays which have the largest sum. The numbe ...

  5. 【leetcode】Maximum Subarray (53)

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  6. 算法:寻找maximum subarray

    <算法导论>一书中演示分治算法的第二个例子,第一个例子是递归排序,较为简单.寻找maximum subarray稍微复杂点. 题目是这样的:给定序列x = [1, -4, 4, 4, 5, ...

  7. LEETCODE —— Maximum Subarray [一维DP]

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  8. 【leetcode】Maximum Subarray

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  9. maximum subarray problem

    In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...

随机推荐

  1. 报错:Validation failed for one or more entities. See 'EntityValidationErrors' property for more details.

    在保存数据的时候报这个错误,知道是验证错误,但到底是哪个属性验证错误呢? →打断点,运行,观察程序出错的地方→在出错的部分添加try...catch语句块→添加监视,输入((System.Data.E ...

  2. Linux下Tomcat的启动、关闭

    在Linux系统下,启动和关闭Tomcat使用命令操作. 进入Tomcat下的bin目录 1 cd /java/tomcat/bin 启动Tomcat命令 1 ./startup.sh 停止Tomca ...

  3. BI 可视化

    1. Blackbird: Open Source JavaScript Logging Utility Blackbird 是一款非常酷的 JavaScript 调试工具,带有一个漂亮的界面显示和过 ...

  4. SharePoint 获取详细Log信息

    在SharePoint的运维当中,我们可能经常会遇到排错,但是即使找到日志,也不是特别的详细,我们还是需要各种无厘头的猜测. 其实,SharePoint是可以打开详细的日志的,尤其是面对一些服务产生的 ...

  5. mysql group by 报错异常解决

    mysql报错及其解决方式 1.在使用group by 查询一张表的数据的时候:select date,time,max(delaytime) as delaytime,sum(delaynum) a ...

  6. Windows10更新后,远程桌面无法登录服务器 提示远程桌面协议 CredSSP 出现漏洞

    Win10远程桌面 出现 身份验证错误,要求的函数不受支持,这可能是由于CredSSP加密Oracle修正 解决方法 打开注册表,手动建立 这个路径 HKEY_LOCAL_MACHINE\SOFTWA ...

  7. 总是容易忘记:enum、int、string之间的快速转换

    public enum Color { Red=, Green= } (1)Enum转换为String Color.Read.ToString() Convert.ToString(Color.Gre ...

  8. 使用pm2管理node.js应用

    中文文档:https://pm2.io/doc/zh/runtime/quick-start/ pm2是从nodejs衍生出来的服务器进程管理工具,可以做到开机就启动nodejs.当然了,有些运维同学 ...

  9. verilog语法实例学习(2)

    Verilog中的信号类型 线网类型 线网类型表示一个或多个门或者其它类型的信号源驱动的硬件连线.如果没有驱动源,则线网的默认值为z.verilog中定义的线网类型有以下几种:     wire,tr ...

  10. dcm4chee 修改默认(0002,0013) ImplementationVersionName

    dcm4chee-2.17.3-psql\server\default\lib\dcm4che.jar ----org\dcm4che\Implementation.properties dcm4ch ...