Paratroopers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7267   Accepted: 2194

Description

It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the Mars. Recently, the commanders of the Earth are informed by their spies that the invaders of Mars want to land some paratroopers in the × n grid yard of one their main weapon factories in order to destroy it. In addition, the spies informed them the row and column of the places in the yard in which each paratrooper will land. Since the paratroopers are very strong and well-organized, even one of them, if survived, can complete the mission and destroy the whole factory. As a result, the defense force of the Earth must kill all of them simultaneously after their landing.

In order to accomplish this task, the defense force wants to utilize some of their most hi-tech laser guns. They can install a gun on a row (resp. column) and by firing this gun all paratroopers landed in this row (resp. column) will die. The cost of installing a gun in the ith row (resp. column) of the grid yard is ri (resp. ci ) and the total cost of constructing a system firing all guns simultaneously is equal to the product of their costs. Now, your team as a high rank defense group must select the guns that can kill all paratroopers and yield minimum total cost of constructing the firing system.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing three integers 1 ≤ m ≤ 50 , 1 ≤ n ≤ 50 and 1 ≤ l ≤ 500 showing the number of rows and columns of the yard and the number of paratroopers respectively. After that, a line with m positive real numbers greater or equal to 1.0 comes where the ith number is ri and then, a line with n positive real numbers greater or equal to 1.0 comes where the ith number is ci. Finally, l lines come each containing the row and column of a paratrooper.

Output

For each test case, your program must output the minimum total cost of constructing the firing system rounded to four digits after the fraction point.

Sample Input

1
4 4 5
2.0 7.0 5.0 2.0
1.5 2.0 2.0 8.0
1 1
2 2
3 3
4 4
1 4

Sample Output

16.0000

这道题第一眼还以为是最优匹配,但是可能开枪数大于最大匹配数,所以不能这么解
以花费为两边容量建边,中间原来的边设为inf,那么每一条边都会流过行花费或者列花费的流量限制
值得一提的是乘积应当转化为自然对数加和然后再指数回来,一开始没看到 另 会在减的过程中小于0,所以直接用a==0判断会T或者WA
//996k 16ms
#include <cstdio>
#include <cstring>
#include <queue>
#include <assert.h>
#include <cmath>
using namespace std;
const double inf=1e20;
const double eps=1e-8;
const int maxnum=302;
const int sups=300,supt=301;
double f[maxnum][maxnum];
int e[maxnum][maxnum];
int len[maxnum]; double min(double a1,double b1) {
return a1<b1?a1:b1;
} int m,n,l;//m ri n ci
void input(){
scanf("%d%d%d",&m,&n,&l);
memset(len,0,sizeof(len)); for(int i=0;i<m;i++){
double ttc;
scanf("%lf",&ttc);
f[sups][i]=log(ttc);
f[i][sups]=0;
e[sups][len[sups]++]=i;
e[i][len[i]++]=sups;
}
for(int i=m;i<m+n;i++){
double ttc;
scanf("%lf",&ttc);
f[i][supt]=log(ttc);
f[supt][i]=0;
e[supt][len[supt]++]=i;
e[i][len[i]++]=supt;
}
for(int i=0;i<l;i++){
int tr,tc;
scanf("%d%d",&tr,&tc);tr--;tc=tc-1+m;
f[tr][tc]=inf;
f[tc][tr]=0;
e[tr][len[tr]++]=tc;e[tc][len[tc]++]=tr;
}
} int d[maxnum];
bool vis[maxnum];
bool bfs(){
memset(vis,0,sizeof(vis));
d[supt]=0;
queue<int >que;
que.push(supt);
vis[supt]=true;
while(!que.empty()){
int fr=que.front();que.pop();
for(int i=0;i<len[fr];i++){
int to=e[fr][i];
if(!vis[to]&&fabs(f[to][fr])>eps){
vis[to]=true;
d[to]=d[fr]+1;
que.push(to);
}
}
}
return vis[sups];
} int cur[maxnum];
double dfs(int s,double a){
if(s==supt||a<eps)return a;
double flow=0;
for(int &i=cur[s];i<len[s];i++){
int to=e[s][i];
double sub;
if(d[s]==d[to]+1&&(sub=dfs(to,min(a,f[s][to])))>eps){
f[s][to]-=sub;
f[to][s]+=sub;
flow+=sub;
a-=sub;
if(fabs(a)<eps)break;
}
}
return flow;
}
double maxflow(){
double ans=0.000;
while(bfs()){
memset(cur,0,sizeof(cur));
ans+=dfs(sups,inf);
}
return ans;
} int main(){
int t;
scanf("%d",&t);
while(t--){
input();
double ans=maxflow();
printf("%.4f\n",exp(ans));
}
return 0;
}

  

												

POJ 3308 Paratroopers 最大流,乘积化和 难度:2的更多相关文章

  1. POJ - 3308 Paratroopers(最大流)

    1.这道题学了个单词,product 还有 乘积 的意思.. 题意就是在一个 m*n的矩阵中,放入L个敌军的伞兵,而我军要在伞兵落地的瞬间将其消灭.现在我军用一种激光枪组建一个防御系统,这种枪可以安装 ...

  2. POJ 3308 Paratroopers(最小割EK(邻接表&矩阵))

    Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...

  3. POJ 3308 Paratroopers(最小点权覆盖)(对数乘转加)

    http://poj.org/problem?id=3308 r*c的地图 每一个大炮可以消灭一行一列的敌人 安装消灭第i行的大炮花费是ri 安装消灭第j行的大炮花费是ci 已知敌人坐标,同时消灭所有 ...

  4. POJ - 3308 Paratroopers (最小点权覆盖)

    题意:N*M个格点,K个位置会有敌人.每行每列都有一门炮,能打掉这一行(列)上所有的敌人.每门炮都有其使用价值.总花费是所有使用炮的权值的乘积.求最小的总花费. 若每门炮的权值都是1,就是求最小点覆盖 ...

  5. POJ 3308 Paratroopers(最大流最小割の最小点权覆盖)

    Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...

  6. POJ 3308 Paratroopers (对数转换+最小点权覆盖)

    题意 敌人侵略r*c的地图.为了消灭敌人,可以在某一行或者某一列安置超级大炮.每一个大炮可以瞬间消灭这一行(或者列)的敌人.安装消灭第i行的大炮消费是ri.安装消灭第j行的大炮消费是ci现在有n个敌人 ...

  7. poj 3308 Paratroopers

    http://poj.org/problem?id=3308 #include <cstdio> #include <cstring> #include <algorit ...

  8. POJ 3308 Paratroopers(最小割EK)

    题目链接 题意 : 有一个n*m的矩阵,L个伞兵可能落在某些点上,这些点的坐标已知,需要在某些位置安上一些枪,然后每个枪可以将一行或者一列的伞兵击毙.把这种枪安装到不同行的行首.或者不同列的列首,费用 ...

  9. zoj 2874 &amp; poj 3308 Paratroopers (最小割)

    意甲冠军: 一m*n该网络的规模格.详细地点称为伞兵着陆(行和列). 现在,在一排(或列) 安装激光枪,激光枪可以杀死线(或塔)所有伞兵.在第一i安装一排 费用是Ri.在第i列安装的费用是Ci. 要安 ...

随机推荐

  1. Socket:读写处理及连接断开的检测

    作为进程间通信及网络通信的一种重要技术,在实际的开发中,socket编程是经常被用到的.关于socket编程的一般步骤,这里不再赘述,相关资料和文章很多,google/baidu即可. 本文主要是探讨 ...

  2. linux下递归列出目录下的所有文件名(不包括目录)

    1.linux下递归列出目录下的所有文件名(不包括目录) ls -lR |grep -v ^d|awk '{print $9}'2.linux下递归列出目录下的所有文件名(不包括目录),并且去掉空行 ...

  3. JavaScript权威指南1.概述

    JavaScript: 1.面向对象.解释型(非编译型)的程序设计语言.一种脚本语言 2.松散类型语言.变量不必具有一个明确的类型.对象中的属性名可以映射为任意的属性值 3.原始数据类型:数字.字符串 ...

  4. #网页中动态嵌入PDF文件/在线预览PDF内容#

    摘要:在web开发时我们有时会需要在线预览PDF内容,在线嵌入pdf文件: 问题1:如何网页中嵌入PDF: 在网页中: 常用的几种PDF预览代码片段如下: 代码片段1: 1 <object ty ...

  5. SqlParameter 参数化模糊查询

    sql += " and a.f_fullName like N'%'+@fullName+'%'";

  6. python 获取指定文件夹的大小

    def getdirsize(dirpath): size = for root, dirs, files in os.walk(dirpath): size += sum([getsize(join ...

  7. html 居中的内容显示框

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Springboot 学习笔记 之 Day 1

    SpringBoot快速入门 https://spring.io/ 1. SpringBoot简介Spring Boot来简化Spring应用开发,约定大于配置,去繁从简,just run就能创建一个 ...

  9. CKEditor5 基本使用

    1.引入 <script type="text/javascript" src="/plugin/ckeditor5/ckeditor.js">&l ...

  10. Ubuntu 18 开机启动慢

    1.通过指令分析 # sudo systemd-analyze blame 39.607s mysql.service 25.194s systemd-journal-flush.service 23 ...