【机器学习】K-means聚类算法与EM算法
初始目的
将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢?
我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。
这个过程有几个难点:
第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。
第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。
EM算法的思想:
E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。
从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量
,M步更新其他参数
来使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。
EM算法就是这样,假设我们想估计知道A和B两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
EM的意思是“Expectation Maximization”在我们上面这个问题里面,我们是先随便猜一下男生(身高)的正态分布的参数:如均值和方差是多少。例如男生的均值是1米7,方差是0.1米(当然了,刚开始肯定没那么准),然后计算出每个人更可能属于第一个还是第二个正态分布中的(例如,这个人的身高是1米8,那很明显,他最大可能属于男生的那个分布),这个是属于Expectation一步。有了每个人的归属,或者说我们已经大概地按上面的方法将这200个人分为男生和女生两部分,我们就可以根据之前说的最大似然那样,通过这些被大概分为男生的n个人来重新估计第一个分布的参数,女生的那个分布同样方法重新估计。这个是Maximization。然后,当我们更新了这两个分布的时候,每一个属于这两个分布的概率又变了,那么我们就再需要调整E步……如此往复,直到参数基本不再发生变化为止。
http://blog.csdn.net/zouxy09/article/details/8537620
【机器学习】K-means聚类算法与EM算法的更多相关文章
- 机器学习优化算法之EM算法
EM算法简介 EM算法其实是一类算法的总称.EM算法分为E-Step和M-Step两步.EM算法的应用范围很广,基本机器学习需要迭代优化参数的模型在优化时都可以使用EM算法. EM算法的思想和过程 E ...
- MM 算法与 EM算法概述
1.MM 算法: MM算法是一种迭代优化方法,利用函数的凸性来寻找它们的最大值或最小值. MM表示 “majorize-minimize MM 算法” 或“minorize maximize MM 算 ...
- 猪猪的机器学习笔记(十四)EM算法
EM算法 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...
- K-means聚类算法与EM算法
K-means聚类算法 K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般. 聚类属于无监督学习.在聚类问题中,给我们的训练样本是,每个,没有了y. K-means算法是将 ...
- Python实现机器学习算法:EM算法
''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- ...
- 机器学习十大算法之EM算法
此文已由作者赵斌授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 由于目前论坛的Markdown不支持Mathjax,数学公式没法正常识别,文章只能用截图上传了... ...
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 聚类之K均值聚类和EM算法
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...
- 【机器学习】机器学习入门08 - 聚类与聚类算法K-Means
时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数 ...
随机推荐
- 优化 App 的启动时间
这是一篇 WWDC 2016 Session 406 的学习笔记,从原理到实践讲述了如何优化 App 的启动时间. App 运行理论 main() 执行前发生的事 Mach-O 格式 虚拟内存基础 M ...
- React(0.13) 组件的组合使用
<html> <head> <title>组件的组合调用</title> <script src="build_0.13/react.m ...
- ubuntu(14.04) 网路管理
网络五元素: MAC地址 IP地址 网络掩码 网关 DNS:将ip地址转换成域名 ping ifconfig route /etc/resolv.conf netstat ip nmap cat /e ...
- go interface 的坑
一.概述 [root@node175 demo]# tree . ├── lib │ └── world.go ├── README └── server.go directory, files ...
- 【C语言】练习5-8
题目来源:<The C programming language>中的习题P92 练习5-8: 一个日期转换的问题,把某月某日这种日期表示形式转换为某年中第几天的表示形式,反之亦然.例 ...
- C# 两个时间相减 返回 对应天时分秒
"; //string sdsdsdsds = "1"; , '); //不足2位 就补充0 足2位 就不变 DateTime dts1 = DateTime.Now; ...
- Oracle 12C -- 删除audit policy
删除之前,必须将policy disable掉:然后再删除 SQL> noaudit policy audit_sysprvi_po01; SQL> drop audit policy a ...
- Oracle 12C -- truncate的级联操作
在之前的版本中,存在外键约束时,无法直接truncate父表.在12C中,对truncate操作添加了级联操作特性. 前提是创建外键约束时,使用了"on delete casacde&quo ...
- nginx / apache / tomcat /resin等 http server的benchmark性能测试方法
性能测试是软件产品发布前必经阶段,对于web app的发布需要使用http server,可选择的优秀免费http server主要有开源apache server, 俄国的nginx,专用于java ...
- 《跟老男孩学Linux运维:Web集群实战》读书笔记
Linux 介绍 Linux 安装 Linux 调优 Web 基础 Nginx 应用 LNMP 应用 PHP 缓存加速 Nginx 调优 MySQL 应用 NFS 网络文件共享 Nginx 反向代理与 ...