TPCx-BB源码分析
Copy from: 一篇文章看懂TPCx-BB(大数据基准测试工具)源码
TPCx-BB是大数据基准测试工具,它通过模拟零售商的30个应用场景,执行30个查询来衡量基于Hadoop的大数据系统的包括硬件和软件的性能。其中一些场景还用到了机器学习算法(聚类、线性回归等)。为了更好地了解被测试的系统的性能,需要对TPCx-BB整个测试流程深入了解。本文详细分析了整个TPCx-BB测试工具的源码,希望能够对大家理解TPCx-BB有所帮助。
代码结构
主目录($BENCH_MARK_HOME
)下有:
- bin
- conf
- data-generator
- engines
- tools
几个子目录。
bin下有几个 module
,是执行时需要用到的脚本:bigBench、cleanLogs、logEnvInformation、runBenchmark、zipLogs等
conf下有两个配置文件:bigBench.properties
和 userSettings.conf
bigBench.properties
主要设置 workload
(执行的benchmarkPhases)和 power_test_0
(POWER_TEST
阶段需要执行的SQL查询)
默认 workload
:
workload=CLEAN_ALL,ENGINE_VALIDATION_DATA_GENERATION,ENGINE_VALIDATION_LOAD_TEST,ENGINE_VALIDATION_POWER_TEST,ENGINE_VALIDATION_RESULT_VALIDATION,CLEAN_DATA,DATA_GENERATION,BENCHMARK_START,LOAD_TEST,POWER_TEST,THROUGHPUT_TEST_1,BENCHMARK_STOP,VALIDATE_POWER_TEST,VALIDATE_THROUGHPUT_TEST_1
默认 power_test_0
:1-30
userSetting.conf
是一些基本设置,包括JAVA environment 、default settings for benchmark(database、engine、map_tasks、scale_factor ...)、HADOOP environment、
HDFS config and paths、Hadoop data generation options(DFS_REPLICATION、HADOOP_JVM_ENV...)
data-generator下是跟数据生成相关的脚本及配置文件。详细内容在下面介绍。
engines下是TPCx-BB支持的4种引擎:biginsights、hive、impala、spark_sql。默认引擎为hive。实际上,只有hive目录下不为空,其他三个目录下均为空,估计是现在还未完善。
tools下有两个jar包:HadoopClusterExec.jar
和 RunBigBench.jar
。其中 RunBigBench.jar
是执行TPCx-BB测试的一个非常重要的文件,大部分程序都在该jar包内。
数据生成
数据生成相关程序和配置都在 data-generator
目录下。该目录下有一个 pdgf.jar
包和 config、dicts、extlib
三个子目录。
pdgf.jar是数据生成的Java程序。config下有两个配置文件:bigbench-generation.xml
和 bigbench-schema.xml
。
bigbench-generation.xml
主要设置生成的原始数据(不是数据库表)包含哪几张表、每张表的表名、表的大小以及表输出的目录、表文件的后缀、分隔符、字符编码等。
<schema name="default">
<tables>
<!-- not refreshed tables -->
<!-- tables not used in benchmark, but some tables have references to them. not refreshed. Kept for legacy reasons -->
<table name="income_band"></table>
<table name="reason"></table>
<table name="ship_mode"></table>
<table name="web_site"></table>
<!-- /tables not used in benchmark -->
<!-- Static tables (fixed small size, generated only on node 1, skipped on others, not generated during refresh) -->
<table name="date_dim" static="true"></table>
<table name="time_dim" static="true"></table>
<table name="customer_demographics" static="true"></table>
<table name="household_demographics" static="true"></table>
<!-- /static tables -->
<!-- "normal" tables. split over all nodes. not generated during refresh -->
<table name="store"></table>
<table name="warehouse"></table>
<table name="promotion"></table>
<table name="web_page"></table>
<!-- /"normal" tables.-->
<!-- /not refreshed tables -->
<!--
refreshed tables. Generated on all nodes.
Refresh tables generate extra data during refresh (e.g. add new data to the existing tables)
In "normal"-Phase generate table rows: [0,REFRESH_PERCENTAGE*Table.Size];
In "refresh"-Phase generate table rows: [REFRESH_PERCENTAGE*Table.Size+1, Table.Size]
.Has effect only if ${REFRESH_SYSTEM_ENABLED}==1.
-->
<table name="customer">
<scheduler name="DefaultScheduler">
<partitioner
name="pdgf.core.dataGenerator.scheduler.TemplatePartitioner">
<prePartition><![CDATA[
if(${REFRESH_SYSTEM_ENABLED}>0){
int tableID = table.getTableID();
int timeID = 0;
long lastTableRow=table.getSize()-1;
long rowStart;
long rowStop;
boolean exclude=false;
long refreshRows=table.getSize()*(1.0-${REFRESH_PERCENTAGE});
if(${REFRESH_PHASE}>0){
//Refresh part
rowStart = lastTableRow - refreshRows +1;
rowStop = lastTableRow;
if(refreshRows<=0){
exclude=true;
}
}else{
//"normal" part
rowStart = 0;
rowStop = lastTableRow - refreshRows;
}
return new pdgf.core.dataGenerator.scheduler.Partition(tableID, timeID,rowStart,rowStop,exclude);
}else{
//DEFAULT
return getParentPartitioner().getDefaultPrePartition(project, table);
}
]]></prePartition>
</partitioner>
</scheduler>
</table>
<output name="SplitFileOutputWrapper">
<!-- DEFAULT output for all Tables, if no table specific output is specified-->
<output name="CSVRowOutput">
<fileTemplate><![CDATA[outputDir + table.getName() +(nodeCount!=1?"_"+pdgf.util.StaticHelper.zeroPaddedNumber(nodeNumber,nodeCount):"")+ fileEnding]]></fileTemplate>
<outputDir>output/</outputDir>
<fileEnding>.dat</fileEnding>
<delimiter>|</delimiter>
<charset>UTF-8</charset>
<sortByRowID>true</sortByRowID>
</output>
<output name="StatisticsOutput" active="1">
<size>${item_size}</size><!-- a counter per item .. initialize later-->
<fileTemplate><![CDATA[outputDir + table.getName()+"_audit" +(nodeCount!=1?"_"+pdgf.util.StaticHelper.zeroPaddedNumber(nodeNumber,nodeCount):"")+ fileEnding]]></fileTemplate>
<outputDir>output/</outputDir>
<fileEnding>.csv</fileEnding>
<delimiter>,</delimiter>
<header><!--"" + pdgf.util.Constants.DEFAULT_LINESEPARATOR-->
</header>
<footer></footer>
bigbench-schema.xml
设置了很多参数,有跟表的规模有关的,比如每张表的大小(记录的条数);绝大多数是跟表的字段有关的,比如时间的起始、结束、性别比例、结婚比例、指标的上下界等。还具体定义了每个字段是怎么生成的,以及限制条件。示例如下:
生成的数据大小由 SCALE_FACTOR(-f)
决定。如 -f 1
,则生成的数据总大小约为1G;-f 100
,则生成的数据总大小约为100G。那么SCALE_FACTOR(-f)
是怎么精确控制生成的数据的大小呢?
原因是 SCALE_FACTOR(-f)
决定了每张表的记录数。如下,customer
表的记录数为 100000.0d * ${SF_sqrt}
,即如果 -f 1
则 customer
表的记录数为 100000*sqrt(1)= 10万条
;如果 -f 100
则 customer
表的记录数为 100000*sqrt(100)= 100万条
<property name="${customer_size}" type="long">100000.0d * ${SF_sqrt}</property>
<property name="${DIMENSION_TABLES_START_DAY}" type="datetime">2000-01-03 00:00:00</property>
<property name="${DIMENSION_TABLES_END_DAY}" type="datetime">2004-01-05 00:00:00</property>
<property name="${gender_likelihood}" type="double">0.5</property>
<property name="${married_likelihood}" type="double">0.3</property>
<property name="${WP_LINK_MIN}" type="double">2</property>
<property name="${WP_LINK_MAX}" type="double">25</property>
<field name="d_date" size="13" type="CHAR" primary="false">
<gen_DateTime>
<disableRng>true</disableRng>
<useFixedStepSize>true</useFixedStepSize>
<startDate>${date_dim_begin_date}</startDate>
<endDate>${date_dim_end_date}</endDate>
<outputFormat>yyyy-MM-dd</outputFormat>
</gen_DateTime>
</field>
<field name="t_time_id" size="16" type="CHAR" primary="false">
<gen_ConvertNumberToString>
<gen_Id/>
<size>16.0</size>
<characters>ABCDEFGHIJKLMNOPQRSTUVWXYZ</characters>
</gen_ConvertNumberToString>
</field>
<field name="cd_dep_employed_count" size="10" type="INTEGER" primary="false">
<gen_Null probability="${NULL_CHANCE}">
<gen_WeightedListItem filename="dicts/bigbench/ds-genProbabilities.txt" list="dependent_count" valueColumn="0" weightColumn="0" />
</gen_Null>
</field>
dicts下有city.dict、country.dict、male.dict、female.dict、state.dict、mail_provider.dict等字典文件,表里每一条记录的各个字段应该是从这些字典里生成的。
extlib下是引用的外部程序jar包。有 lucene-core-4.9.0.jar
、commons-net-3.3.jar
、xml-apis.jar
和log4j-1.2.15.jar
等
总结:
pdgf.jar
根据bigbench-generation.xml
和 bigbench-schema.xml
两个文件里的配置(表名、字段名、表的记录条数、每个字段生成的规则),从 dicts
目录下对应的 .dict
文件获取表中每一条记录、每个字段的值,生成原始数据。
customer
表里的某条记录如下:
0 AAAAAAAAAAAAAAAA 1824793 3203 2555 28776 14690 Ms. Marisa Harrington N 17 4 1988 UNITED ARAB EMIRATES RRCyuY3XfE3a Marisa.Harrington@lawyer.com gdMmGdU9
如果执行 TPCx-BB 测试时指定 -f 1(SCALE_FACTOR = 1)
则最终生成的原始数据总大小约为 1G(977M+8.6M)
[root@node-20-100 ~]# hdfs dfs -du -h /user/root/benchmarks/bigbench/data
12.7 M 38.0 M /user/root/benchmarks/bigbench/data/customer
5.1 M 15.4 M /user/root/benchmarks/bigbench/data/customer_address
74.2 M 222.5 M /user/root/benchmarks/bigbench/data/customer_demographics
14.7 M 44.0 M /user/root/benchmarks/bigbench/data/date_dim
151.5 K 454.4 K /user/root/benchmarks/bigbench/data/household_demographics
327 981 /user/root/benchmarks/bigbench/data/income_band
405.3 M 1.2 G /user/root/benchmarks/bigbench/data/inventory
6.5 M 19.5 M /user/root/benchmarks/bigbench/data/item
4.0 M 12.0 M /user/root/benchmarks/bigbench/data/item_marketprices
53.7 M 161.2 M /user/root/benchmarks/bigbench/data/product_reviews
45.3 K 135.9 K /user/root/benchmarks/bigbench/data/promotion
3.0 K 9.1 K /user/root/benchmarks/bigbench/data/reason
1.2 K 3.6 K /user/root/benchmarks/bigbench/data/ship_mode
3.3 K 9.9 K /user/root/benchmarks/bigbench/data/store
4.1 M 12.4 M /user/root/benchmarks/bigbench/data/store_returns
88.5 M 265.4 M /user/root/benchmarks/bigbench/data/store_sales
4.9 M 14.6 M /user/root/benchmarks/bigbench/data/time_dim
584 1.7 K /user/root/benchmarks/bigbench/data/warehouse
170.4 M 511.3 M /user/root/benchmarks/bigbench/data/web_clickstreams
7.9 K 23.6 K /user/root/benchmarks/bigbench/data/web_page
5.1 M 15.4 M /user/root/benchmarks/bigbench/data/web_returns
127.6 M 382.8 M /user/root/benchmarks/bigbench/data/web_sales
8.6 K 25.9 K /user/root/benchmarks/bigbench/data/web_site
执行流程
要执行TPCx-BB测试,首先需要切换到TPCx-BB源程序的目录下,然后进入bin目录,执行以下语句:
./bigBench runBenchmark -f 1 -m 8 -s 2 -j 5
其中,-f、-m、-s、-j都是参数,用户可根据集群的性能以及自己的需求来设置。如果不指定,则使用默认值,默认值在 conf
目录下的 userSetting.conf
文件指定,如下:
export BIG_BENCH_DEFAULT_DATABASE="bigbench"
export BIG_BENCH_DEFAULT_ENGINE="hive"
export BIG_BENCH_DEFAULT_MAP_TASKS="80"
export BIG_BENCH_DEFAULT_SCALE_FACTOR="1000"
export BIG_BENCH_DEFAULT_NUMBER_OF_PARALLEL_STREAMS="2"
export BIG_BENCH_DEFAULT_BENCHMARK_PHASE="run_query"
默认 MAP_TASKS
为 80(-m 80)
、SCALE_FACTOR
为 1000(-f 1000)
、NUMBER_OF_PARALLEL_STREAMS
为 2(-s 2)
。
所有可选参数及其意义如下:
General options:
-d 使用的数据库 (默认: $BIG_BENCH_DEFAULT_DATABASE -> bigbench)
-e 使用的引擎 (默认: $BIG_BENCH_DEFAULT_ENGINE -> hive)
-f 数据集的规模因子(scale factor) (默认: $BIG_BENCH_DEFAULT_SCALE_FACTOR -> 1000)
-h 显示帮助
-m 数据生成的`map tasks`数 (default: $BIG_BENCH_DEFAULT_MAP_TASKS)"
-s 并行的`stream`数 (默认: $BIG_BENCH_DEFAULT_NUMBER_OF_PARALLEL_STREAMS -> 2)
Driver specific options:
-a 伪装模式执行
-b 执行期间将调用的bash脚本在标准输出中打印出来
-i 指定需要执行的阶段 (详情见$BIG_BENCH_CONF_DIR/bigBench.properties)
-j 指定需要执行的查询 (默认:1-30共30个查询均执行)"
-U 解锁专家模式
若指定了-U
,即解锁了专家模式,则:
echo "EXPERT MODE ACTIVE"
echo "WARNING - INTERNAL USE ONLY:"
echo "Only set manually if you know what you are doing!"
echo "Ignoring them is probably the best solution"
echo "Running individual modules:"
echo "Usage: `basename $0` module [options]"
-D 指定需要debug的查询部分. 大部分查询都只有一个单独的部分
-p 需要执行的benchmark phase (默认: $BIG_BENCH_DEFAULT_BENCHMARK_PHASE -> run_query)"
-q 指定需要执行哪个查询(只能指定一个)
-t 指定执行该查询时用第哪个stream
-v metastore population的sql脚本 (默认: ${USER_POPULATE_FILE:-"$BIG_BENCH_POPULATION_DIR/hiveCreateLoad.sql"})"
-w metastore refresh的sql脚本 (默认: ${USER_REFRESH_FILE:-"$BIG_BENCH_REFRESH_DIR/hiveRefreshCreateLoad.sql"})"
-y 含额外的用户自定义查询参数的文件 (global: $BIG_BENCH_ENGINE_CONF_DIR/queryParameters.sql)"
-z 含额外的用户自定义引擎设置的文件 (global: $BIG_BENCH_ENGINE_CONF_DIR/engineSettings.sql)"
List of available modules:
$BIG_BENCH_ENGINE_BIN_DIR
回到刚刚执行TPCx-BB测试的语句:
./bigBench runBenchmark -f 1 -m 8 -s 2 -j 5
bigBench
bigBench
是主脚本,runBenchmark
是module。
bigBench
里设置了很多环境变量(包括路径、引擎、STREAM数等等),因为后面调用 runBigBench.jar
的时候需要在Java程序里读取这些环境变量。
bigBench
前面都是在做一些基本工作,如设置环境变量、解析用户输入参数、赋予文件权限、设置路径等等。到最后一步调用 runBenchmark
的 runModule()
方法:
设置基本路径
export BIG_BENCH_VERSION="1.0"
export BIG_BENCH_BIN_DIR="$BIG_BENCH_HOME/bin"
export BIG_BENCH_CONF_DIR="$BIG_BENCH_HOME/conf"
export BIG_BENCH_DATA_GENERATOR_DIR="$BIG_BENCH_HOME/data-generator"
export BIG_BENCH_TOOLS_DIR="$BIG_BENCH_HOME/tools"
export BIG_BENCH_LOGS_DIR="$BIG_BENCH_HOME/logs"指定
core-site.xml
和hdfs-site.xml
的路径数据生成时要用到Hadoop集群,生成在hdfs上
export BIG_BENCH_DATAGEN_CORE_SITE="$BIG_BENCH_HADOOP_CONF/core-site.xml"
export BIG_BENCH_DATAGEN_HDFS_SITE="$BIG_BENCH_HADOOP_CONF/hdfs-site.xml"赋予整个包下所有可执行文件权限(.sh/.jar/.py)
find "$BIG_BENCH_HOME" -name '*.sh' -exec chmod 755 {} +
find "$BIG_BENCH_HOME" -name '*.jar' -exec chmod 755 {} +
find "$BIG_BENCH_HOME" -name '*.py' -exec chmod 755 {} +设置
userSetting.conf
的路径并source
USER_SETTINGS="$BIG_BENCH_CONF_DIR/userSettings.conf"
if [ ! -f "$USER_SETTINGS" ]
then
echo "User settings file $USER_SETTINGS not found"
exit 1
else
source "$USER_SETTINGS"
fi解析输入参数和选项并根据选项的内容作设置
第一个参数必须是
module_name
如果没有输入参数或者第一个参数以"-"开头,说明用户没有输入需要运行的module。
if [[ $# -eq 0 || "`echo "$1" | cut -c1`" = "-" ]]
then
export MODULE_NAME=""
SHOW_HELP="1"
else
export MODULE_NAME="$1"
shift
fi
export LIST_OF_USER_OPTIONS="$@"解析用户输入的参数
根据用户输入的参数来设置环境变量
while getopts ":d:D:e:f:hm:p:q:s:t:Uv:w:y:z:abi:j:" OPT; do
case "$OPT" in
# script options
d)
#echo "-d was triggered, Parameter: $OPTARG" >&2
USER_DATABASE="$OPTARG"
;;
D)
#echo "-D was triggered, Parameter: $OPTARG" >&2
DEBUG_QUERY_PART="$OPTARG"
;;
e)
#echo "-e was triggered, Parameter: $OPTARG" >&2
USER_ENGINE="$OPTARG"
;;
f)
#echo "-f was triggered, Parameter: $OPTARG" >&2
USER_SCALE_FACTOR="$OPTARG"
;;
h)
#echo "-h was triggered, Parameter: $OPTARG" >&2
SHOW_HELP="1"
;;
m)
#echo "-m was triggered, Parameter: $OPTARG" >&2
USER_MAP_TASKS="$OPTARG"
;;
p)
#echo "-p was triggered, Parameter: $OPTARG" >&2
USER_BENCHMARK_PHASE="$OPTARG"
;;
q)
#echo "-q was triggered, Parameter: $OPTARG" >&2
QUERY_NUMBER="$OPTARG"
;;
s)
#echo "-t was triggered, Parameter: $OPTARG" >&2
USER_NUMBER_OF_PARALLEL_STREAMS="$OPTARG"
;;
t)
#echo "-s was triggered, Parameter: $OPTARG" >&2
USER_STREAM_NUMBER="$OPTARG"
;;
U)
#echo "-U was triggered, Parameter: $OPTARG" >&2
USER_EXPERT_MODE="1"
;;
v)
#echo "-v was triggered, Parameter: $OPTARG" >&2
USER_POPULATE_FILE="$OPTARG"
;;
w)
#echo "-w was triggered, Parameter: $OPTARG" >&2
USER_REFRESH_FILE="$OPTARG"
;;
y)
#echo "-y was triggered, Parameter: $OPTARG" >&2
USER_QUERY_PARAMS_FILE="$OPTARG"
;;
z)
#echo "-z was triggered, Parameter: $OPTARG" >&2
USER_ENGINE_SETTINGS_FILE="$OPTARG"
;;
# driver options
a)
#echo "-a was triggered, Parameter: $OPTARG" >&2
export USER_PRETEND_MODE="1"
;;
b)
#echo "-b was triggered, Parameter: $OPTARG" >&2
export USER_PRINT_STD_OUT="1"
;;
i)
#echo "-i was triggered, Parameter: $OPTARG" >&2
export USER_DRIVER_WORKLOAD="$OPTARG"
;;
j)
#echo "-j was triggered, Parameter: $OPTARG" >&2
export USER_DRIVER_QUERIES_TO_RUN="$OPTARG"
;;
\?)
echo "Invalid option: -$OPTARG" >&2
exit 1
;;
:)
echo "Option -$OPTARG requires an argument." >&2
exit 1
;;
esac
done设置全局变量。如果用户指定了某个参数的值,则采用该值,否则使用默认值。
export BIG_BENCH_EXPERT_MODE="${USER_EXPERT_MODE:-"0"}"
export SHOW_HELP="${SHOW_HELP:-"0"}"
export BIG_BENCH_DATABASE="${USER_DATABASE:-"$BIG_BENCH_DEFAULT_DATABASE"}"
export BIG_BENCH_ENGINE="${USER_ENGINE:-"$BIG_BENCH_DEFAULT_ENGINE"}"
export BIG_BENCH_MAP_TASKS="${USER_MAP_TASKS:-"$BIG_BENCH_DEFAULT_MAP_TASKS"}"
export BIG_BENCH_SCALE_FACTOR="${USER_SCALE_FACTOR:-"$BIG_BENCH_DEFAULT_SCALE_FACTOR"}"
export BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS="${USER_NUMBER_OF_PARALLEL_STREAMS:-"$BIG_BENCH_DEFAULT_NUMBER_OF_PARALLEL_STREAMS"}"
export BIG_BENCH_BENCHMARK_PHASE="${USER_BENCHMARK_PHASE:-"$BIG_BENCH_DEFAULT_BENCHMARK_PHASE"}"
export BIG_BENCH_STREAM_NUMBER="${USER_STREAM_NUMBER:-"0"}"
export BIG_BENCH_ENGINE_DIR="$BIG_BENCH_HOME/engines/$BIG_BENCH_ENGINE"
export BIG_BENCH_ENGINE_CONF_DIR="$BIG_BENCH_ENGINE_DIR/conf"检测 -s -m -f -j的选项是否为数字
if [ -n "`echo "$BIG_BENCH_MAP_TASKS" | sed -e 's/[0-9]*//g'`" ]
then
echo "$BIG_BENCH_MAP_TASKS is not a number"
fi
if [ -n "`echo "$BIG_BENCH_SCALE_FACTOR" | sed -e 's/[0-9]*//g'`" ]
then
echo "$BIG_BENCH_SCALE_FACTOR is not a number"
fi
if [ -n "`echo "$BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS" | sed -e 's/[0-9]*//g'`" ]
then
echo "$BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS is not a number"
fi
if [ -n "`echo "$BIG_BENCH_STREAM_NUMBER" | sed -e 's/[0-9]*//g'`" ]
then
echo "$BIG_BENCH_STREAM_NUMBER is not a number"
fi检查引擎是否存在
if [ ! -d "$BIG_BENCH_ENGINE_DIR" ]
then
echo "Engine directory $BIG_BENCH_ENGINE_DIR not found. Aborting script..."
exit 1
fi
if [ ! -d "$BIG_BENCH_ENGINE_CONF_DIR" ]
then
echo "Engine configuration directory $BIG_BENCH_ENGINE_CONF_DIR not found. Aborting script..."
exit 1
fi设置
engineSetting.conf
路径并source
ENGINE_SETTINGS="$BIG_BENCH_ENGINE_CONF_DIR/engineSettings.conf"
if [ ! -f "$ENGINE_SETTINGS" ]
then
echo "Engine settings file $ENGINE_SETTINGS not found"
exit 1
else
source "$ENGINE_SETTINGS"
fi检查module是否存在
当输入某个module时,系统会先到
$BIG_BENCH_ENGINE_BIN_DIR/
目录下去找该module是否存在,如果存在,就source "$MODULE"
;如果该目录下不存在指定的module,再到export MODULE="$BIG_BENCH_BIN_DIR/"
目录下找该module,如果存在,就source "$MODULE"
;否则,输出Module $MODULE not found, aborting script.
export MODULE="$BIG_BENCH_ENGINE_BIN_DIR/$MODULE_NAME"
if [ -f "$MODULE" ]
then
source "$MODULE"
else
export MODULE="$BIG_BENCH_BIN_DIR/$MODULE_NAME"
if [ -f "$MODULE" ]
then
source "$MODULE"
else
echo "Module $MODULE not found, aborting script."
exit 1
fi
fi检查module里的runModule()、helpModule ( )、runEngineCmd()方法是否有定义
MODULE_RUN_METHOD="runModule"
if ! declare -F "$MODULE_RUN_METHOD" > /dev/null 2>&1
then
echo "$MODULE_RUN_METHOD was not implemented, aborting script"
exit 1
fi运行
module
如果module是runBenchmark,执行
runCmdWithErrorCheck "$MODULE_RUN_METHOD"
也就是runCmdWithErrorCheck runModule()
由上可以看出,bigBench脚本主要执行一些如设置环境变量、赋予权限、检查并解析输入参数等基础工作,最终调用runBenchmark
的runModule()
方法继续往下执行。
runBenchmark
接下来看看runBenchmark
脚本。
runBenchmark
里有两个函数:helpModule ()
和runModule ()
。
helpModule ()
就是显示帮助。
runModule ()
是运行runBenchmark
模块时真正调用的函数。该函数主要做四件事:
- 清除之前生成的日志
- 调用
RunBigBench.jar
来执行 - logEnvInformation
- 将日志文件夹打包成zip
源码如下:
runModule () {
#check input parameters
if [ "$BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS" -le 0 ]
then
echo "The number of parallel streams -s must be greater than 0"
return 1
fi
"${BIG_BENCH_BIN_DIR}/bigBench" cleanLogs -U $LIST_OF_USER_OPTIONS
"$BIG_BENCH_JAVA" -jar "${BIG_BENCH_TOOLS_DIR}/RunBigBench.jar"
"${BIG_BENCH_BIN_DIR}/bigBench" logEnvInformation -U $LIST_OF_USER_OPTIONS
"${BIG_BENCH_BIN_DIR}/bigBench" zipLogs -U $LIST_OF_USER_OPTIONS
return $?
}
相当于运行runBenchmark
模块时又调用了cleanLogs
、logEnvInformation
、zipLogs
三个模块以及RunBigBench.jar
。其中RunBigBench.jar
是TCPx-BB测试执行的核心代码,用Java语言编写。接下来分析RunBigBench.jar
源码。
runModule()
runModule()函数用来执行某个module。我们已知,执行某个module需要切换到主目录下的bin目录,然后执行:
./bigBench module_name arguments
在runModule()函数里,cmdLine用来生成如上命令。
ArrayList cmdLine = new ArrayList();
cmdLine.add("bash");
cmdLine.add(this.runScript);
cmdLine.add(benchmarkPhase.getRunModule());
cmdLine.addAll(arguments);
其中,this.runScript
为:
this.runScript = (String)env.get("BIG_BENCH_BIN_DIR") + "/bigBench";
benchmarkPhase.getRunModule()
用来获得需要执行的module。
arguments
为用户输入的参数。
至此,cmdLine为:
bash $BIG_BENCH_BIN_DIR/bigBench module_name arguments
那么,怎么让系统执行该bash命令呢?答案是调用runCmd()
方法。
boolean successful = this.runCmd(this.homeDir, benchmarkPhase.isPrintStdOut(), (String[])cmdLine.toArray(new String[0]));
接下来介绍rumCmd()方法
runCmd()
runCmd()方法通过ProcessBuilder
来创建一个操作系统进程,并用该进程执行以上的bash命令。
ProcessBuilder
还可以设置工作目录和环境。
ProcessBuilder pb = new ProcessBuilder(command);
pb.directory(new File(workingDirectory));
Process p = null;
---
p = pb.start();
getQueryList()
getQueryList()用来获得需要执行的查询列表。从$BIG_BENCH_LOGS_DIR/bigBench.properties
文件中读取。与$BIG_BENCH_HOME/conf/bigBench.properties
内容一致。
bigBench.properties
里power_test_0=1-30
规定了powter_test_0
阶段需要执行的查询及其顺序。
可以用区间如 5-12
或者单个数字如 21
表示,中间用 ,
隔开。
power_test_0=28-25,2-5,10,22,30
表示powter_test_0
阶段需要执行的查询及其顺序为:28,27,26,25,2,3,4,5,10,22,30
如果想让30个查询按顺序执行,则:
power_test_0=1-30
获得查询列表的源码如下:
private List<Integer> getQueryList(BigBench.BenchmarkPhase benchmarkPhase, int streamNumber) {
String SHUFFLED_NAME_PATTERN = "shuffledQueryList";
BigBench.BenchmarkPhase queryOrderBasicPhase = BigBench.BenchmarkPhase.POWER_TEST;
String propertyKey = benchmarkPhase.getQueryListProperty(streamNumber);
boolean queryOrderCached = benchmarkPhase.isQueryOrderCached();
if(queryOrderCached && this.queryListCache.containsKey(propertyKey)) {
return new ArrayList((Collection)this.queryListCache.get(propertyKey));
} else {
Object queryList;
String basicPhaseNamePattern;
if(!this.properties.containsKey(propertyKey)) {
if(benchmarkPhase.isQueryOrderRandom()) {
if(!this.queryListCache.containsKey("shuffledQueryList")) {
basicPhaseNamePattern = queryOrderBasicPhase.getQueryListProperty(0);
if(!this.properties.containsKey(basicPhaseNamePattern)) {
throw new IllegalArgumentException("Property " + basicPhaseNamePattern + " is not defined, but is the basis for shuffling the query list.");
}
this.queryListCache.put("shuffledQueryList", this.getQueryList(queryOrderBasicPhase, 0));
}
queryList = (List)this.queryListCache.get("shuffledQueryList");
this.shuffleList((List)queryList, this.rnd);
} else {
queryList = this.getQueryList(queryOrderBasicPhase, 0);
}
} else {
queryList = new ArrayList();
String[] var11;
int var10 = (var11 = this.properties.getProperty(propertyKey).split(",")).length;
label65:
for(int var9 = 0; var9 < var10; ++var9) {
basicPhaseNamePattern = var11[var9];
String[] queryRange = basicPhaseNamePattern.trim().split("-");
switch(queryRange.length) {
case 1:
((List)queryList).add(Integer.valueOf(Integer.parseInt(queryRange[0].trim())));
break;
case 2:
int startQuery = Integer.parseInt(queryRange[0]);
int endQuery = Integer.parseInt(queryRange[1]);
int i;
if(startQuery > endQuery) {
i = startQuery;
while(true) {
if(i < endQuery) {
continue label65;
}
((List)queryList).add(Integer.valueOf(i));
--i;
}
} else {
i = startQuery;
while(true) {
if(i > endQuery) {
continue label65;
}
((List)queryList).add(Integer.valueOf(i));
++i;
}
}
default:
throw new IllegalArgumentException("Query numbers must be in the form X or X-Y, comma separated.");
}
}
}
if(queryOrderCached) {
this.queryListCache.put(propertyKey, new ArrayList((Collection)queryList));
}
return new ArrayList((Collection)queryList);
}
}
parseEnvironment()
parseEnvironment()读取系统的环境变量并解析。
Map env = System.getenv();
this.version = (String)env.get("BIG_BENCH_VERSION");
this.homeDir = (String)env.get("BIG_BENCH_HOME");
this.confDir = (String)env.get("BIG_BENCH_CONF_DIR");
this.runScript = (String)env.get("BIG_BENCH_BIN_DIR") + "/bigBench";
this.datagenDir = (String)env.get("BIG_BENCH_DATA_GENERATOR_DIR");
this.logDir = (String)env.get("BIG_BENCH_LOGS_DIR");
this.dataGenLogFile = (String)env.get("BIG_BENCH_DATAGEN_STAGE_LOG");
this.loadLogFile = (String)env.get("BIG_BENCH_LOADING_STAGE_LOG");
this.engine = (String)env.get("BIG_BENCH_ENGINE");
this.database = (String)env.get("BIG_BENCH_DATABASE");
this.mapTasks = (String)env.get("BIG_BENCH_MAP_TASKS");
this.numberOfParallelStreams = Integer.parseInt((String)env.get("BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS"));
this.scaleFactor = Long.parseLong((String)env.get("BIG_BENCH_SCALE_FACTOR"));
this.stopAfterFailure = ((String)env.get("BIG_BENCH_STOP_AFTER_FAILURE")).equals("1");
并自动在用户指定的参数后面加上 -U
(解锁专家模式)
this.userArguments.add("-U");
如果用户指定了 PRETEND_MODE
、PRINT_STD_OUT
、WORKLOAD
、QUERIES_TO_RUN
,则以用户指定的参数为准,否则使用默认值。
if(env.containsKey("USER_PRETEND_MODE")) {
this.properties.setProperty("pretend_mode", (String)env.get("USER_PRETEND_MODE"));
}
if(env.containsKey("USER_PRINT_STD_OUT")) {
this.properties.setProperty("show_command_stdout", (String)env.get("USER_PRINT_STD_OUT"));
}
if(env.containsKey("USER_DRIVER_WORKLOAD")) {
this.properties.setProperty("workload", (String)env.get("USER_DRIVER_WORKLOAD"));
}
if(env.containsKey("USER_DRIVER_QUERIES_TO_RUN")) {
this.properties.setProperty(BigBench.BenchmarkPhase.POWER_TEST.getQueryListProperty(0), (String)env.get("USER_DRIVER_QUERIES_TO_RUN"));
}
读取 workload
并赋值 benchmarkPhases
。如果 workload
里不包含 BENCHMARK_START
和 BENCHMARK_STOP
,自动在 benchmarkPhases
的首位和末位分别加上 BENCHMARK_START
和 BENCHMARK_STOP
。
this.benchmarkPhases = new ArrayList();
Iterator var7 = Arrays.asList(this.properties.getProperty("workload").split(",")).iterator();
while(var7.hasNext()) {
String benchmarkPhase = (String)var7.next();
this.benchmarkPhases.add(BigBench.BenchmarkPhase.valueOf(benchmarkPhase.trim()));
}
if(!this.benchmarkPhases.contains(BigBench.BenchmarkPhase.BENCHMARK_START)) {
this.benchmarkPhases.add(0, BigBench.BenchmarkPhase.BENCHMARK_START);
}
if(!this.benchmarkPhases.contains(BigBench.BenchmarkPhase.BENCHMARK_STOP)) {
this.benchmarkPhases.add(BigBench.BenchmarkPhase.BENCHMARK_STOP);
}
run()
run()
方法是 RunBigBench.jar
里核心的方法。所有的执行都是通过 run()
方法调用的。比如 runQueries()
、runModule()
、generateData()
等。runQueries()
、runModule()
、generateData()
又通过调用 runCmd()
方法来创建操作系统进程,执行bash命令,调用bash脚本。
run()
方法里通过一个 while
循环来逐一执行 workload
里的每一个 benchmarkPhase
。 不同的 benchmarkPhase
会调用 runQueries()
、runModule()
、generateData()
...中的不同方法。
try {
long e = 0L;
this.log.finer("Benchmark phases: " + this.benchmarkPhases);
Iterator startCheckpoint = this.benchmarkPhases.iterator();
long throughputStart;
while(startCheckpoint.hasNext()) {
BigBench.BenchmarkPhase children = (BigBench.BenchmarkPhase)startCheckpoint.next();
if(children.isPhaseDone()) {
this.log.info("The phase " + children.name() + " was already performed earlier. Skipping this phase");
} else {
try {
switch($SWITCH_TABLE$io$bigdatabenchmark$v1$driver$BigBench$BenchmarkPhase()[children.ordinal()]) {
case 1:
case 20:
throw new IllegalArgumentException("The value " + children.name() + " is only used internally.");
case 2:
this.log.info(children.getConsoleMessage());
e = System.currentTimeMillis();
break;
case 3:
if(!BigBench.BenchmarkPhase.BENCHMARK_START.isPhaseDone()) {
throw new IllegalArgumentException("Error: Cannot stop the benchmark before starting it");
}
throughputStart = System.currentTimeMillis();
this.log.info(String.format("%-55s finished. Time: %25s", new Object[]{children.getConsoleMessage(), BigBench.Helper.formatTime(throughputStart - e)}));
this.logTreeRoot.setCheckpoint(new BigBench.Checkpoint(BigBench.BenchmarkPhase.BENCHMARK, -1L, -1L, e, throughputStart, this.logTreeRoot.isSuccessful()));
break;
case 4:
case 15:
case 18:
case 22:
case 27:
case 28:
case 29:
this.runModule(children, this.userArguments);
break;
case 5:
case 10:
case 11:
this.runQueries(children, 1, validationArguments);
break;
case 6:
case 9:
this.runModule(children, validationArguments);
break;
case 7:
this.generateData(children, false, validationArguments);
break;
case 8:
this.generateData(children, true, validationArguments);
break;
case 12:
case 19:
case 24:
this.runQueries(children, 1, this.userArguments);
break;
case 13:
case 14:
case 21:
case 23:
case 25:
case 26:
this.runQueries(children, this.numberOfParallelStreams, this.userArguments);
break;
case 16:
this.generateData(children, false, this.userArguments);
break;
case 17:
this.generateData(children, true, this.userArguments);
}
children.setPhaseDone(true);
} catch (IOException var21) {
this.log.info("==============\nBenchmark run terminated\nReason: An error occured while running a command in phase " + children + "\n==============");
var21.printStackTrace();
if(this.stopAfterFailure || children.mustSucceed()) {
break;
}
}
}
}
这里的 case 1-29
并不是 1-29
条查询,而是枚举类型里的 1-29
个 benmarkPhase
。如下所示:
private static enum BenchmarkPhase {
BENCHMARK((String)null, "benchmark", false, false, false, false, "BigBench benchmark"),
BENCHMARK_START((String)null, "benchmark_start", false, false, false, false, "BigBench benchmark: Start"),
BENCHMARK_STOP((String)null, "benchmark_stop", false, false, false, false, "BigBench benchmark: Stop"),
CLEAN_ALL("cleanAll", "clean_all", false, false, false, false, "BigBench clean all"),
ENGINE_VALIDATION_CLEAN_POWER_TEST("cleanQuery", "engine_validation_power_test", false, false, false, false, "BigBench engine validation: Clean power test queries"),
ENGINE_VALIDATION_CLEAN_LOAD_TEST("cleanMetastore", "engine_validation_metastore", false, false, false, false, "BigBench engine validation: Clean metastore"),
ENGINE_VALIDATION_CLEAN_DATA("cleanData", "engine_validation_data", false, false, false, false, "BigBench engine validation: Clean data"),
ENGINE_VALIDATION_DATA_GENERATION("dataGen", "engine_validation_data", false, false, false, true, "BigBench engine validation: Data generation"),
ENGINE_VALIDATION_LOAD_TEST("populateMetastore", "engine_validation_metastore", false, false, false, true, "BigBench engine validation: Populate metastore"),
ENGINE_VALIDATION_POWER_TEST("runQuery", "engine_validation_power_test", false, false, false, false, "BigBench engine validation: Power test"),
ENGINE_VALIDATION_RESULT_VALIDATION("validateQuery", "engine_validation_power_test", false, false, true, false, "BigBench engine validation: Check all query results"),
CLEAN_POWER_TEST("cleanQuery", "power_test", false, false, false, false, "BigBench clean: Clean power test queries"),
CLEAN_THROUGHPUT_TEST_1("cleanQuery", "throughput_test_1", false, false, false, false, "BigBench clean: Clean first throughput test queries"),
CLEAN_THROUGHPUT_TEST_2("cleanQuery", "throughput_test_2", false, false, false, false, "BigBench clean: Clean second throughput test queries"),
CLEAN_LOAD_TEST("cleanMetastore", "metastore", false, false, false, false, "BigBench clean: Load test"),
CLEAN_DATA("cleanData", "data", false, false, false, false, "BigBench clean: Data"),
DATA_GENERATION("dataGen", "data", false, false, false, true, "BigBench preparation: Data generation"),
LOAD_TEST("populateMetastore", "metastore", false, false, false, true, "BigBench phase 1: Load test"),
POWER_TEST("runQuery", "power_test", false, true, false, false, "BigBench phase 2: Power test"),
THROUGHPUT_TEST((String)null, "throughput_test", false, false, false, false, "BigBench phase 3: Throughput test"),
THROUGHPUT_TEST_1("runQuery", "throughput_test_1", true, true, false, false, "BigBench phase 3: First throughput test run"),
THROUGHPUT_TEST_REFRESH("refreshMetastore", "throughput_test_refresh", false, false, false, false, "BigBench phase 3: Throughput test data refresh"),
THROUGHPUT_TEST_2("runQuery", "throughput_test_2", true, true, false, false, "BigBench phase 3: Second throughput test run"),
VALIDATE_POWER_TEST("validateQuery", "power_test", false, false, true, false, "BigBench validation: Power test results"),
VALIDATE_THROUGHPUT_TEST_1("validateQuery", "throughput_test_1", false, false, true, false, "BigBench validation: First throughput test results"),
VALIDATE_THROUGHPUT_TEST_2("validateQuery", "throughput_test_2", false, false, true, false, "BigBench validation: Second throughput test results"),
SHOW_TIMES("showTimes", "show_times", false, false, true, false, "BigBench: show query times"),
SHOW_ERRORS("showErrors", "show_errors", false, false, true, false, "BigBench: show query errors"),
SHOW_VALIDATION("showValidation", "show_validation", false, false, true, false, "BigBench: show query validation results");
private String runModule;
private String namePattern;
private boolean queryOrderRandom;
private boolean queryOrderCached;
private boolean printStdOut;
private boolean mustSucceed;
private String consoleMessage;
private boolean phaseDone;
private BenchmarkPhase(String runModule, String namePattern, boolean queryOrderRandom, boolean queryOrderCached, boolean printStdOut, boolean mustSucceed, String consoleMessage) {
this.runModule = runModule;
this.namePattern = namePattern;
this.queryOrderRandom = queryOrderRandom;
this.queryOrderCached = queryOrderCached;
this.printStdOut = printStdOut;
this.mustSucceed = mustSucceed;
this.consoleMessage = consoleMessage;
this.phaseDone = false;
}
3对应 BENCHMARK_STOP
,4对应 CLEAN_ALL
,29对应 SHOW_VALIDATION
,依此类推...
可以看出:
CLEAN_ALL、CLEAN_LOAD_TEST、LOAD_TEST、THROUGHPUT_TEST_REFRESH、SHOW_TIMES、SHOW_ERRORS、SHOW_VALIDATION
等benchmarkPhases调用的是
this.runModule(children, this.userArguments);
方法是 runModule
,参数是 this.userArguments
。
ENGINE_VALIDATION_CLEAN_POWER_TEST、ENGINE_VALIDATION_POWER_TEST、ENGINE_VALIDATION_RESULT_VALIDATION
调用的是
this.runQueries(children, 1, validationArguments);
方法是 runQueries
,参数是 1
(stream number) 和 validationArguments
。
ENGINE_VALIDATION_CLEAN_LOAD_TEST
和 ENGINE_VALIDATION_LOAD_TEST
调用的是
this.runModule(children, validationArguments);
ENGINE_VALIDATION_CLEAN_DATA
调用的是
this.generateData(children, false, validationArguments);
ENGINE_VALIDATION_DATA_GENERATION
调用的是
this.generateData(children, true, validationArguments);
CLEAN_POWER_TEST
、POWER_TEST
、VALIDATE_POWER_TEST
调用的是
this.runQueries(children, 1, this.userArguments);
CLEAN_THROUGHPUT_TEST_1``CLEAN_THROUGHPUT_TEST_2``THROUGHPUT_TEST_1``THROUGHPUT_TEST_2``VALIDATE_THROUGHPUT_TEST_1
VALIDATE_THROUGHPUT_TEST_2
调用的是
this.runQueries(children, this.numberOfParallelStreams, this.userArguments);
CLEAN_DATA
调用的是
this.generateData(children, false, this.userArguments);
DATA_GENERATION
调用的是
this.generateData(children, true, this.userArguments);
总结一下以上的方法调用可以发现:
- 跟
ENGINE_VALIDATION
相关的benchmarkPhase用的参数都是validationArguments
。其余用的是userArguments
( validationArguments 和 userArguments 唯一的区别是 validationArguments 的SCALE_FACTOR
恒为1) - 跟
POWER_TEST
相关的都是调用runQueries()
方法,因为POWER_TEST
就是执行SQL查询 - 跟
CLEAN_DATA
DATA_GENERATION
相关的都是调用generateData()
方法 - 跟
LOAD_TEST
SHOW
相关的都是调用runModule()
方法
benchmarkPhase 和 module 对应关系
具体每个 benchmarkPhase
跟 module
(执行的脚本)的对应关系如下:
CLEAN_ALL -> "cleanAll"
ENGINE_VALIDATION_CLEAN_POWER_TEST -> "cleanQuery"
ENGINE_VALIDATION_CLEAN_LOAD_TEST -> "cleanMetastore",
ENGINE_VALIDATION_CLEAN_DATA -> "cleanData"
ENGINE_VALIDATION_DATA_GENERATION -> "dataGen"
ENGINE_VALIDATION_LOAD_TEST -> "populateMetastore"
ENGINE_VALIDATION_POWER_TEST -> "runQuery"
ENGINE_VALIDATION_RESULT_VALIDATION -> "validateQuery"
CLEAN_POWER_TEST -> "cleanQuery"
CLEAN_THROUGHPUT_TEST_1 -> "cleanQuery"
CLEAN_THROUGHPUT_TEST_2 -> "cleanQuery"
CLEAN_LOAD_TEST -> "cleanMetastore"
CLEAN_DATA -> "cleanData"
DATA_GENERATION -> "dataGen"
LOAD_TEST -> "populateMetastore"
POWER_TEST -> "runQuery"
THROUGHPUT_TEST -> (String)null
THROUGHPUT_TEST_1 -> "runQuery"
THROUGHPUT_TEST_REFRESH -> "refreshMetastore"
THROUGHPUT_TEST_2 -> "runQuery"
VALIDATE_POWER_TEST -> "validateQuery"
VALIDATE_THROUGHPUT_TEST_1 -> "validateQuery"
VALIDATE_THROUGHPUT_TEST_2 -> "validateQuery"
SHOW_TIMES -> "showTimes"
SHOW_ERRORS -> "showErrors"
SHOW_VALIDATION -> "showValidation"
当执行某个 benchmarkPhase
时会去调用如上该 benchmarkPhase
对应的 module
(脚本位于 $BENCH_MARK_HOME/engines/hive/bin
目录下)
cmdLine.add(benchmarkPhase.getRunModule());
程序调用流程
接下来介绍每个module的功能
module
cleanAll
1. DROP DATABASE
2. 删除hdfs上的源数据
echo "dropping database (with all tables)"
runCmdWithErrorCheck runEngineCmd -e "DROP DATABASE IF EXISTS $BIG_BENCH_DATABASE CASCADE;"
echo "cleaning ${BIG_BENCH_HDFS_ABSOLUTE_HOME}"
hadoop fs -rm -r -f -skipTrash "${BIG_BENCH_HDFS_ABSOLUTE_HOME}"
cleanQuery
1. 删除对应的 Query 生成的临时表
2. 删除对应的 Query 生成的结果表
runCmdWithErrorCheck runEngineCmd -e "DROP TABLE IF EXISTS $TEMP_TABLE1; DROP TABLE IF EXISTS $TEMP_TABLE2; DROP TABLE IF EXISTS $RESULT_TABLE;"
return $?
cleanMetastore
1. 调用 `dropTables.sql` 将23张表依次DROP
echo "cleaning metastore tables"
runCmdWithErrorCheck runEngineCmd -f "$BIG_BENCH_CLEAN_METASTORE_FILE"
export BIG_BENCH_CLEAN_METASTORE_FILE="$BIG_BENCH_CLEAN_DIR/dropTables.sql"
dropTables.sql
将23张表依次DROP,源码如下:
DROP TABLE IF EXISTS ${hiveconf:customerTableName};
DROP TABLE IF EXISTS ${hiveconf:customerAddressTableName};
DROP TABLE IF EXISTS ${hiveconf:customerDemographicsTableName};
DROP TABLE IF EXISTS ${hiveconf:dateTableName};
DROP TABLE IF EXISTS ${hiveconf:householdDemographicsTableName};
DROP TABLE IF EXISTS ${hiveconf:incomeTableName};
DROP TABLE IF EXISTS ${hiveconf:itemTableName};
DROP TABLE IF EXISTS ${hiveconf:promotionTableName};
DROP TABLE IF EXISTS ${hiveconf:reasonTableName};
DROP TABLE IF EXISTS ${hiveconf:shipModeTableName};
DROP TABLE IF EXISTS ${hiveconf:storeTableName};
DROP TABLE IF EXISTS ${hiveconf:timeTableName};
DROP TABLE IF EXISTS ${hiveconf:warehouseTableName};
DROP TABLE IF EXISTS ${hiveconf:webSiteTableName};
DROP TABLE IF EXISTS ${hiveconf:webPageTableName};
DROP TABLE IF EXISTS ${hiveconf:inventoryTableName};
DROP TABLE IF EXISTS ${hiveconf:storeSalesTableName};
DROP TABLE IF EXISTS ${hiveconf:storeReturnsTableName};
DROP TABLE IF EXISTS ${hiveconf:webSalesTableName};
DROP TABLE IF EXISTS ${hiveconf:webReturnsTableName};
DROP TABLE IF EXISTS ${hiveconf:marketPricesTableName};
DROP TABLE IF EXISTS ${hiveconf:clickstreamsTableName};
DROP TABLE IF EXISTS ${hiveconf:reviewsTableName};
cleanData
1. 删除hdfs上 /user/root/benchmarks/bigbench/data 目录
2. 删除hdfs上 /user/root/benchmarks/bigbench/data_refresh 目录
echo "cleaning ${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"
hadoop fs -rm -r -f -skipTrash "${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"
echo "cleaning ${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"
hadoop fs -rm -r -f -skipTrash "${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"
dataGen
1. 创建目录 /user/root/benchmarks/bigbench/data 并赋予权限
2. 创建目录 /user/root/benchmarks/bigbench/data_refresh 并赋予权限
3. 调用 HadoopClusterExec.jar 和 pdgf.jar 生成 base data 到 /user/root/benchmarks/bigbench/data 目录下
4. 调用 HadoopClusterExec.jar 和 pdgf.jar 生成 refresh data 到 /user/root/benchmarks/bigbench/data_refresh 目录下
创建目录 /user/root/benchmarks/bigbench/data 并赋予权限
runCmdWithErrorCheck hadoop fs -mkdir -p "${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"
runCmdWithErrorCheck hadoop fs -chmod 777 "${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"
创建目录 /user/root/benchmarks/bigbench/data_refresh 并赋予权限
runCmdWithErrorCheck hadoop fs -mkdir -p "${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"
runCmdWithErrorCheck hadoop fs -chmod 777 "${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"
调用 HadoopClusterExec.jar 和 pdgf.jar 生成 base data
runCmdWithErrorCheck hadoop jar "${BIG_BENCH_TOOLS_DIR}/HadoopClusterExec.jar" -archives "${PDGF_ARCHIVE_PATH}" ${BIG_BENCH_DATAGEN_HADOOP_EXEC_DEBUG} -taskFailOnNonZeroReturnValue -execCWD "${PDGF_DISTRIBUTED_NODE_DIR}" ${HadoopClusterExecOptions} -exec ${BIG_BENCH_DATAGEN_HADOOP_JVM_ENV} -cp "${HADOOP_CP}:pdgf.jar" ${PDGF_CLUSTER_CONF} pdgf.Controller -nc HadoopClusterExec.tasks -nn HadoopClusterExec.taskNumber -ns -c -sp REFRESH_PHASE 0 -o "'${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}/'+table.getName()+'/'" ${BIG_BENCH_DATAGEN_HADOOP_OPTIONS} -s ${BIG_BENCH_DATAGEN_TABLES} ${PDGF_OPTIONS} "$@" 2>&1 | tee -a "$BIG_BENCH_DATAGEN_STAGE_LOG" 2>&1
调用 HadoopClusterExec.jar 和 pdgf.jar 生成 refresh data
runCmdWithErrorCheck hadoop jar "${BIG_BENCH_TOOLS_DIR}/HadoopClusterExec.jar" -archives "${PDGF_ARCHIVE_PATH}" ${BIG_BENCH_DATAGEN_HADOOP_EXEC_DEBUG} -taskFailOnNonZeroReturnValue -execCWD "${PDGF_DISTRIBUTED_NODE_DIR}" ${HadoopClusterExecOptions} -exec ${BIG_BENCH_DATAGEN_HADOOP_JVM_ENV} -cp "${HADOOP_CP}:pdgf.jar" ${PDGF_CLUSTER_CONF} pdgf.Controller -nc HadoopClusterExec.tasks -nn HadoopClusterExec.taskNumber -ns -c -sp REFRESH_PHASE 1 -o "'${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}/'+table.getName()+'/'" ${BIG_BENCH_DATAGEN_HADOOP_OPTIONS} -s ${BIG_BENCH_DATAGEN_TABLES} ${PDGF_OPTIONS} "$@" 2>&1 | tee -a "$BIG_BENCH_DATAGEN_STAGE_LOG" 2>&1
populateMetastore
该过程是真正的创建数据库表的过程。建表的过程调用的是 $BENCH_MARK_HOME/engines/hive/population/
目录下的 hiveCreateLoad.sql
,通过该sql文件来建数据库表。
- 从 /user/root/benchmarks/bigbench/data 路径下读取 .dat 的原始数据,生成 TEXTFILE 格式的外部临时表
- 用
select * from 临时表
来创建最终的 ORC 格式的数据库表 - 删除外部临时表。
从 /user/root/benchmarks/bigbench/data 路径下读取 .dat 的原始数据,生成 TEXTFILE 格式的外部临时表
DROP TABLE IF EXISTS ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix};
CREATE EXTERNAL TABLE ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
( c_customer_sk bigint --not null
, c_customer_id string --not null
, c_current_cdemo_sk bigint
, c_current_hdemo_sk bigint
, c_current_addr_sk bigint
, c_first_shipto_date_sk bigint
, c_first_sales_date_sk bigint
, c_salutation string
, c_first_name string
, c_last_name string
, c_preferred_cust_flag string
, c_birth_day int
, c_birth_month int
, c_birth_year int
, c_birth_country string
, c_login string
, c_email_address string
, c_last_review_date string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '${hiveconf:fieldDelimiter}'
STORED AS TEXTFILE LOCATION '${hiveconf:hdfsDataPath}/${hiveconf:customerTableName}'
;
用 select * from 临时表
来创建最终的 ORC 格式的数据库表
DROP TABLE IF EXISTS ${hiveconf:customerTableName};
CREATE TABLE ${hiveconf:customerTableName}
STORED AS ${hiveconf:tableFormat}
AS
SELECT * FROM ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
;
删除外部临时表
DROP TABLE ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix};
runQuery
1. runQuery 调用每个query下的 run.sh 里的 `query_run_main_method()` 方法
2. `query_run_main_method()` 调用 `runEngineCmd` 来执行query脚本(qxx.sql)
runQuery 调用每个query下的 run.sh 里的 query_run_main_method()
方法
QUERY_MAIN_METHOD="query_run_main_method"
-----------------------------------------
"$QUERY_MAIN_METHOD" 2>&1 | tee -a "$LOG_FILE_NAME" 2>&1
query_run_main_method()
调用 runEngineCmd
来执行query脚本(qxx.sql)
query_run_main_method () {
QUERY_SCRIPT="$QUERY_DIR/$QUERY_NAME.sql"
if [ ! -r "$QUERY_SCRIPT" ]
then
echo "SQL file $QUERY_SCRIPT can not be read."
exit 1
fi
runCmdWithErrorCheck runEngineCmd -f "$QUERY_SCRIPT"
return $?
}
一般情况下 query_run_main_method ()
方法只是执行对应的query脚本,但是像 q05、q20... 这些查询,用到了机器学习算法,所以在执行对应的query脚本后会把生成的结果表作为输入,然后调用执行机器学习算法(如聚类、逻辑回归)的jar包继续执行,得到最终的结果。
runEngineCmd () {
if addInitScriptsToParams
then
"$BINARY" "${BINARY_PARAMS[@]}" "${INIT_PARAMS[@]}" "$@"
else
return 1
fi
}
--------------------------
BINARY="/usr/bin/hive"
BINARY_PARAMS+=(--hiveconf BENCHMARK_PHASE=$BIG_BENCH_BENCHMARK_PHASE --hiveconf STREAM_NUMBER=$BIG_BENCH_STREAM_NUMBER --hiveconf QUERY_NAME=$QUERY_NAME --hiveconf QUERY_DIR=$QUERY_DIR --hiveconf RESULT_TABLE=$RESULT_TABLE --hiveconf RESULT_DIR=$RESULT_DIR --hiveconf TEMP_TABLE=$TEMP_TABLE --hiveconf TEMP_DIR=$TEMP_DIR --hiveconf TABLE_PREFIX=$TABLE_PREFIX)
INIT_PARAMS=(-i "$BIG_BENCH_QUERY_PARAMS_FILE" -i "$BIG_BENCH_ENGINE_SETTINGS_FILE")
INIT_PARAMS+=(-i "$LOCAL_QUERY_ENGINE_SETTINGS_FILE")
if [ -n "$USER_QUERY_PARAMS_FILE" ]
then
if [ -r "$USER_QUERY_PARAMS_FILE" ]
then
echo "User defined query parameter file found. Adding $USER_QUERY_PARAMS_FILE to hive init."
INIT_PARAMS+=(-i "$USER_QUERY_PARAMS_FILE")
else
echo "User query parameter file $USER_QUERY_PARAMS_FILE can not be read."
return 1
fi
fi
if [ -n "$USER_ENGINE_SETTINGS_FILE" ]
then
if [ -r "$USER_ENGINE_SETTINGS_FILE" ]
then
echo "User defined engine settings file found. Adding $USER_ENGINE_SETTINGS_FILE to hive init."
INIT_PARAMS+=(-i "$USER_ENGINE_SETTINGS_FILE")
else
echo "User hive settings file $USER_ENGINE_SETTINGS_FILE can not be read."
return 1
fi
fi
return 0
validateQuery
1. 调用每个query下的 run.sh 里的 `query_run_validate_method()` 方法
2. `query_run_validate_method()` 比较 `$BENCH_MARK_HOME/engines/hive/queries/qxx/results/qxx-result` 和hdfs上 `/user/root/benchmarks/bigbench/queryResults/qxx_hive_${BIG_BENCH_BENCHMARK_PHASE}_${BIG_BENCH_STREAM_NUMBER}_result` 两个文件,如果一样,则验证通过,否则验证失败。
if diff -q "$VALIDATION_RESULTS_FILENAME" <(hadoop fs -cat "$RESULT_DIR/*")
then
echo "Validation of $VALIDATION_RESULTS_FILENAME passed: Query returned correct results"
else
echo "Validation of $VALIDATION_RESULTS_FILENAME failed: Query returned incorrect results"
VALIDATION_PASSED="0"
fi
SF为1时(-f 1),用上面的方法比较,SF不为1(>1)时,只要hdfs上的结果表中行数大于等于1即验证通过
if [ `hadoop fs -cat "$RESULT_DIR/*" | head -n 10 | wc -l` -ge 1 ]
then
echo "Validation passed: Query returned results"
else
echo "Validation failed: Query did not return results"
return 1
fi
refreshMetastore
1. 调用 `$BENCH_MARK_HOME/engines/hive/refresh/` 目录下的 `hiveRefreshCreateLoad.sql` 脚本
2. `hiveRefreshCreateLoad.sql` 将hdfs上 `/user/root/benchmarks/bigbench/data_refresh/` 目录下每个表数据插入外部临时表
3. 外部临时表再将每个表的数据插入Hive数据库对应的表中
hiveRefreshCreateLoad.sql
将hdfs上 /user/root/benchmarks/bigbench/data_refresh/
目录下每个表数据插入外部临时表
DROP TABLE IF EXISTS ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix};
CREATE EXTERNAL TABLE ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
( c_customer_sk bigint --not null
, c_customer_id string --not null
, c_current_cdemo_sk bigint
, c_current_hdemo_sk bigint
, c_current_addr_sk bigint
, c_first_shipto_date_sk bigint
, c_first_sales_date_sk bigint
, c_salutation string
, c_first_name string
, c_last_name string
, c_preferred_cust_flag string
, c_birth_day int
, c_birth_month int
, c_birth_year int
, c_birth_country string
, c_login string
, c_email_address string
, c_last_review_date string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '${hiveconf:fieldDelimiter}'
STORED AS TEXTFILE LOCATION '${hiveconf:hdfsDataPath}/${hiveconf:customerTableName}'
;
-----------------
set hdfsDataPath=${env:BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR};
外部临时表再将每个表的数据插入Hive数据库对应的表中
INSERT INTO TABLE ${hiveconf:customerTableName}
SELECT * FROM ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
;
附录
TPCx-BB源码分析的更多相关文章
- zookeeper源码分析之四服务端(单机)处理请求流程
上文: zookeeper源码分析之一服务端启动过程 中,我们介绍了zookeeper服务器的启动过程,其中单机是ZookeeperServer启动,集群使用QuorumPeer启动,那么这次我们分析 ...
- zookeeper源码分析之三客户端发送请求流程
znode 可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个功能是zookeeper对于应用最重要的特性,通过这个特性可以实现的功能包括配置的 ...
- 【集合框架】JDK1.8源码分析之LinkedHashMap(二)
一.前言 前面我们已经分析了HashMap的源码,已经知道了HashMap可以用在哪种场合,如果这样一种情形,我们需要按照元素插入的顺序来访问元素,此时,LinkedHashMap就派上用场了,它保存 ...
- 【集合框架】JDK1.8源码分析之IdentityHashMap(四)
一.前言 前面已经分析了HashMap与LinkedHashMap,现在我们来分析不太常用的IdentityHashMap,从它的名字上也可以看出来用于表示唯一的HashMap,仔细分析了其源码,发现 ...
- 【集合框架】JDK1.8源码分析之TreeMap(五)
一.前言 当我们需要把插入的元素进行排序的时候,就是时候考虑TreeMap了,从名字上来看,TreeMap肯定是和树是脱不了干系的,它是一个排序了的Map,下面我们来着重分析其源码,理解其底层如何实现 ...
- PHP扩展编写、PHP扩展调试、VLD源码分析、基于嵌入式Embed SAPI实现opcode查看
catalogue . 编译PHP源码 . 扩展结构.优缺点 . 使用PHP原生扩展框架wizard ext_skel编写扩展 . 编译安装VLD . Debug调试VLD . VLD源码分析 . 嵌 ...
- 【Zookeeper】源码分析之持久化--FileSnap
一.前言 前篇博文已经分析了FileTxnLog的源码,现在接着分析持久化中的FileSnap,其主要提供了快照相应的接口. 二.SnapShot源码分析 SnapShot是FileTxnLog的父类 ...
- 【Zookeeper】源码分析之持久化--FileTxnSnapLog
一.前言 前面分析了FileSnap,接着继续分析FileTxnSnapLog源码,其封装了TxnLog和SnapShot,其在持久化过程中是一个帮助类. 二.FileTxnSnapLog源码分析 2 ...
- 【Zookeeper】源码分析之请求处理链(二)
一.前言 前面学习了请求处理链的RequestProcessor父类,接着学习PrepRequestProcessor,其通常是请求处理链的第一个处理器. 二.ZooKeeper源码分析 2.1 类的 ...
- 【Zookeeper】源码分析之请求处理链(四)
一.前言 前面分析了SyncReqeustProcessor,接着分析请求处理链中最后的一个处理器FinalRequestProcessor. 二.FinalRequestProcessor源码分析 ...
随机推荐
- 微信小程序-1
微信小程序 (开发微信小程序基础:HTML+js+css) l 准备工作 工具安装 开发工具是由微信官方提供 项目的预览(校验环境) l 开发体验阶段 - Hello world ...
- linux cut字符串切割
linux字符串列截取 cut -d ‘分割条件’ -f ‘列数’ [root@LocalWeb01 ~]# less /etc/passwd | grep '^user' | grep -v ...
- 优化改良版:数组,List,等集合需要加逗号或其它符合转成字符串
大家经常需要数组加逗号拼接成字符串的情况传统作法就是写for,foreach拼接, 现给出优化改良版数组,List,等集合需要加逗号或其它符合转成字符串方法: List<string> l ...
- Window下PHP三种运行方式图文详解,window下的php是不是单进程的?
Window下PHP三种运行方式图文详解,window下的php是不是单进程的? PHP运行目前为止主要有三种方式: a.以模块加载的方式运行,初学者可能不容易理解,其实就是将PHP集成到Apache ...
- Windows10 64位下安装TensorFlow谷歌人工智能系统已官方原生支持
Windows10 64位下安装TensorFlow谷歌人工智能系统已官方原生支持 GitHub - tensorflow/tensorflow: Computation using data flo ...
- javascript中的console.log有什么作用?
javascript中的console.log有什么作用? 主要是方便你调式javascript用的.你可以看到你在页面中输出的内容. 相比alert他的优点是:他能看到结构话的东西,如果是alert ...
- apache 中 ServerAlias让多个域名绑定到同一空间
在apache的虚拟主机中,如果书写了.ServerAlias www.a2.com www.a3.com这样的语句,就可以给虚拟主机增加多个域名,而且这些域名都访问同一个站点. #Listen 81 ...
- keepalived+MySQL高可用集群
基于keepalived搭建MySQL的高可用集群 MySQL的高可用方案一般有如下几种: keepalived+双主,MHA,MMM,Heartbeat+DRBD,PXC,Galera Clus ...
- troubleshooting-执行导数shell脚本抛异常error=2, No such file or directory
Cannot run program "order_log.sh" (in directory "/data/yarn/nm/usercache/chenweidong/ ...
- 基于Android的闹钟的软件
一.本课题要求:设计一个基于Android的闹钟的软件. 实现的功能有:能通过界面设置闹钟的启动条件建立后台服务进程,当满足触发条件时,闹钟响应相应事件. 二.需求分析 该课题实现在手机操作系统And ...