OpenCV中图像算术操作与逻辑操作
OpenCV中图像算术操作与逻辑操作
在图像处理中有两类最重要的基础操作各自是图像点操作与块操作。简单点说图像点操作就是图像每一个像素点的相关逻辑与几何运算、块操作最常见就是基于卷积算子的各种操作、实现各种不同的功能。今天小编就跟大家一起学习OpenCV中图像点操作相关的函数与应用场景。
常见算术运算包含加、减、乘、除,逻辑运算包含与、或、非、异或。
准备工作:
选择两张大小一致的图像例如以下、载入成功以后显演示样例如以下:
加法操作结果例如以下:
减法操作结果例如以下:
乘法操作结果例如以下:
除法操作结果例如以下:
权重加法操作结果例如以下:
异或与非操作结果例如以下:
代码例如以下:
Mat src1, src2, dst;
src1 = imread("D:/vcprojects/images/test1.png");
src2 = imread("D:/vcprojects/images/moon.png");
const char* input_title1 = "input image - 1";
const char* input_title2 = "input image - 2";
namedWindow(input_title1, CV_WINDOW_AUTOSIZE);
namedWindow(input_title2, CV_WINDOW_AUTOSIZE);
imshow(input_title1, src1);
imshow(input_title2, src2);
// create result windows and background image
const char* output_title = "result image";
namedWindow(output_title, CV_WINDOW_AUTOSIZE);
Mat bgImg = Mat(src1.size(), src1.type());
Mat whiteImg = Mat(src1.size(), src1.type());
whiteImg = Scalar(255, 255, 255);
// 暂时图像
Mat skel(src1.size(), CV_8UC1, Scalar(0));
Mat temp(src1.size(), CV_8UC1);
Mat element = getStructuringElement(MORPH_CROSS, Size(3, 3), Point(-1, -1));
bool done = false;
int index = 9, c;
while (true) {
switch (index) {
case 1:
// 加操作
add(src1, src2, dst, Mat(), -1);
imshow(output_title, dst);
break;
case 2:
// 减操作
subtract(src1, src2, dst, Mat(), -1);
imshow(output_title, dst);
break;
case 3:
// 乘操作
bgImg = Scalar(2, 2, 2);
multiply(src1, bgImg, dst, 1.0, -1);
imshow(output_title, dst);
break;
case 4:
// 除操作
bgImg = Scalar(2, 2, 2);
divide(src1, bgImg, dst, 1.0, -1);
imshow(output_title, dst);
break;
case 5:
// 基于权重加法 - 调节亮度
addWeighted(src1, 1.5, src2, 0.5, 0, dst, -1);
imshow(output_title, dst);
break;
case 6:
// 逻辑非
bitwise_not(src1, dst, Mat());
imshow(output_title, dst);
break;
case 7:
subtract(whiteImg, src1, dst, Mat(), -1);
imshow(output_title, dst);
break;
case 8:
// 逻辑异或
bgImg = Scalar(255, 255, 255);
bitwise_xor(src1, bgImg, dst, Mat());
imshow(output_title, dst);
break;
default:
imshow(output_title, src2);
break;
}
c = waitKey(500);
if ((char)c == 27) {
break;
}
if(c > 0) {
index = c % 9;
}
}
此外我们还能够基于逻辑操作与形态学的腐蚀操作实现二值图像的骨架提取,Demo演示结果例如以下:
代码实现例如以下:
// 提取骨架
// 转灰度与二值化
cvtColor(src1, src1, COLOR_BGR2GRAY);
threshold(src1, dst, 127, 255, CV_THRESH_BINARY);
//bitwise_not(src1, src1);
do {
// 开操作 - 确保去掉小的干扰块
morphologyEx(src1, temp, MORPH_OPEN, element);
// 取反操作
bitwise_not(temp, temp);
// 得到与源图像不同
bitwise_and(src1, temp, temp);
// 使用它提取骨架、得到是只比源图像小一个像素
bitwise_or(skel, temp, skel);
// 每次循环腐蚀,通过不断腐蚀的方式得到框架
erode(src1, src1, element);
// 对腐蚀之后的图像寻找最大值,假设被全然腐蚀则说明
// 只剩下背景黑色、已经得到骨架,退出循环
double max;
minMaxLoc(src1, 0, &max);
done = (0 == max);
} while (!done);
// 显示骨架
imshow(output_title, skel);
总结:
通过上述代码演示。能够发现简单的图像算术运算也能够发挥大作用。基于黑色背景图像与原图权重叠加能够实现图像亮度调整、基于乘法能够实现对照度调整。基于逻辑操作与腐蚀操作能够实现二值图像的骨架提取。
OpenCV中图像算术操作与逻辑操作的更多相关文章
- OpenCV中图像的格式Mat 图像深度
opencv中图像的格式Mat 有图像的定义,图像深度.类型格式等,其中Mat的参数depth为深度,深度反应出图像颜色像素值: 关于数据的储存:(转) Mat_<uchar>对应的是CV ...
- Opencv中图像的遍历与像素操作
Opencv中图像的遍历与像素操作 OpenCV中表示图像的数据结构是cv::Mat,Mat对象本质上是一个由数值组成的矩阵.矩阵的每一个元素代表一个像素,对于灰度图像,像素是由8位无符号数来表示(0 ...
- OpenCV中图像的BGR格式及Img对象的属性说明
1. 图像的BGR格式说明 OpenCV中图像读入的数据格式是numpy的ndarray数据格式.是BGR格式,取值范围是[0,255]. 如下图所示,分为三个维度: 第一维度:Height 高度,对 ...
- [OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (一)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相 ...
- [OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (二)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函 ...
- opencv中图像伪彩色处理(C++ / Python)
使用OpenCV的预定义的颜色映射来将灰度图像伪彩色化. 1. colormap(色度图)是什么? 假设我们想在地图上显示美国不同地区的温度.我们可以把美国地图上的温度数据叠加为灰度图像——较暗的区域 ...
- 深入学习OpenCV中图像灰度化原理,图像相似度的算法
最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜 ...
- OpenCV中图像指针注意点
1.cvQueryFrame方法从摄像头或文件中抓取的帧图像是不能被释放和修改的 2.不要用delete删除,一定要用cvReleaseImage删除且要带有&符号.
- OpenCV中图像以Mat类型保存时各通道数据在内存中的组织形式及python代码访问各通道数据的简要方式
以最简单的4 x 5三通道图像为例,其在内存中Mat类型的数据组织形式如下: 每一行的每一列像素的三个通道数据组成一个一维数组,一行像素组成一个二维数组,整幅图像组成一个三维数组,即: Mat.dat ...
随机推荐
- Web工程中各类地址的写法
1)总体原则 在java web开发中,只要是url地址,那么最好以“/”开头,也就是绝对路径的方式.那么这个“/”到底代表什么呢? 如果“/”是给服务器用的,则代表当前web工程:如果是给浏览器用的 ...
- Ubuntu x86-64汇编(6)
寻址方式 Addressing Modes 地址和值 Addresses vs Values 在64bit架构中, 地址是64bit. 访问内存内容的唯一方式就是通过方括号, 不加方括号读取的只是地址 ...
- Java Web 开发进阶案例之人事管理系统的完整实现
技术:Java+ jsp + servlet+ javabeans +sql+tomcat 概述 本系统的主要任务是实现人事管理系统的系统化和自动化管理, 主要包括招聘入 职.到期离职和员工调动信 ...
- QQ登录整合/oauth2.0认证-04-调整到QQ互联进行QQ登录
---------------------------------目录------------------------------------- QQ登录整合/oauth2.0认证-03-对第二节的代 ...
- eclipse 找类的jar包方便工具
经常在开发过程,因为使用到比较多的类库(jar文件),在开发时经常会找不到需要的类文件存放在哪个jar文件中,这时classlocator这个插件就带我们带来极大的方便,可以帮我很快速的找到我们需要的 ...
- HTTP代理服务器
一.什么是代理服务器 代理服务器英文全称是Proxy Server,其功能就是代理网络用户去取得网络信息.形象的说:它是网络信息的中转站. 在一般情况下,我们使用网络浏览器直接去连接其他Interne ...
- 业务、架构、技术,我们应该关注什么 Java和.Net的优势劣势简单看法 市场经济决定,商业之道即是软件之道,市场的需求决定着软件技术的发展 利益决定着选择应用新技术
业务.架构.技术,我们应该关注什么 一个企业存在的必然和前提就是获取企业生成的利润,怎么样合法合理取得利润呢,企业怎么样生存下去呢,很简单,为客户提供等值的产品与服务,客户支付你相应的报酬. 我们是从 ...
- php自动获取字符串编码函数mb_detect_encoding(转)
使用 mb_detect_encoding() 函数来判断字符串是什么编码的. 当在php中使用mb_detect_encoding函数进行编码识别时,很多人都碰到过识别编码有误的问题,例如对与GB2 ...
- Linux CentOS 7.x/6.x/5.x 导入epel源
How to Enable EPEL Repository for RHEL/CentOS 7.x/6.x/5.x vim /etc/yum.repos.d/CentOS-Base.repo 取消注释 ...
- 【Algorithm】九种常用排序的性能分析
最近间间断断的将9种排序算法用C实现,并且将其以博客笔记的形式记录下来,其中各个排序算法的描述部分特别参考了CSDN上太阳落雨的博客!现在就该来综合的分析这九种排序,让我们先来看看其算法复杂度和稳定性 ...