2D NumPy Arrays

from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=9

  • Your First 2D NumPy Array

# Create baseball, a list of lists
baseball = [[180, 78.4],
[215, 102.7],
[210, 98.5],
[188, 75.2]]

# Import numpy
import numpy as np

# Create a 2D numpy array from baseball: np_baseball
np_baseball = np.array(baseball)

# Print out the type of np_baseball
print(type(np_baseball))

# Print out the shape of np_baseball. Use np_baseball.shape.
print(np_baseball.shape)

  • Baseball data in 2D form

Change list to 2D array, it will get a form with two columns.

# baseball is available as a regular list of lists

baseball = [[74, 180], [74, 215], [72, 210], [72, 210], [73, 188], [69, 176], [69, 209], [71, 200], [76, 231], [71, 180], [73, 188], [73, 180], [74, 185], [74, 160], [69, 180], [70, 185], [73, 189], [75, 185], [78, 219], [79, 230], [76, 205], [74, 230], [76, 195], [72, 180], [71, 192], [75, 225], [77, 203], [74, 195], [73, 182], [74, 188], [78, 200], [73, 180], [75, 200], [73, 200], [75, 245], [75, 240], [74, 215], [69, 185], [71, 175], [74, 199], [73, 200], [73, 215], [76, 200], [74, 205], [74, 206], [70, 186], [72, 188], [77, 220], [74, 210], [70, 195], [73, 200], [75, 200], [76, 212], [76, 224], [78, 210], [74, 205], [74, 220], [76, 195], [77, 200], [81, 260], [78, 228], [75, 270], [77, 200], [75, 210], [76, 190], [74, 220], [72, 180], [72, 205], [75, 210], [73, 220], [73, 211], [73, 200], [70, 180], [70, 190], [70, 170], [76, 230], [68, 155], [71, 185], [72, 185], [75, 200], [75, 225], [75, 225], [75, 220], [68, 160], [74, 205], [78, 235], [71, 250], [73, 210], [76, 190], [74, 160], [74, 200], [79, 205], [75, 222], [73, 195], [76, 205], [74, 220], [74, 220], [73, 170], [72, 185], [74, 195], [73, 220], [74, 230], [72, 180], [73, 220], [69, 180], [72, 180], [73, 170], [75, 210], [75, 215], [73, 200], [72, 213], [72, 180], [76, 192], [74, 235], [72, 185], [77, 235], [74, 210], [77, 222], [75, 210], [76, 230], [80, 220], [74, 180], [74, 190], [75, 200], [78, 210], [73, 194], [73, 180], [74, 190], [75, 240], [76, 200], [71, 198], [73, 200], [74, 195], [76, 210], [76, 220], [74, 190], [73, 210], [74, 225], [70, 180], [72, 185], [73, 170], [73, 185], [73, 185], [73, 180], [71, 178], [74, 175], [74, 200], [72, 204], [74, 211], [71, 190], [74, 210], [73, 190], [75, 190], [75, 185], [79, 290], [73, 175], [75, 185], [76, 200], [74, 220], [76, 170], [78, 220], [74, 190], [76, 220], [72, 205], [74, 200], [76, 250], [74, 225], [75, 215], [78, 210], [75, 215], [72, 195], [74, 200], [72, 194], [74, 220], [70, 180], [71, 180], [70, 170], [75, 195], [71, 180], [71, 170], [73, 206], [72, 205], [71, 200], [73, 225], [72, 201], [75, 225], [74, 233], [74, 180], [75, 225], [73, 180], [77, 220], [73, 180], [76, 237], [75, 215], [74, 190], [76, 235], [75, 190], [73, 180], [71, 165], [76, 195], [75, 200], [72, 190], [71, 190], [77, 185], [73, 185], [74, 205], [71, 190], [72, 205], [74, 206], [75, 220], [73, 208], [72, 170], [75, 195], [75, 210], [74, 190], [72, 211], [74, 230], [71, 170], [70, 185], [74, 185], [77, 241], [77, 225], [75, 210], [75, 175], [78, 230], [75, 200], [76, 215], [73, 198], [75, 226], [75, 278], [79, 215], [77, 230], [76, 240], [71, 184], [75, 219], [74, 170], [69, 218], [71, 190], [76, 225], [72, 220], [72, 176], [70, 190], [72, 197], [73, 204], [71, 167], [72, 180], [71, 195], [73, 220], [72, 215], [73, 185], [74, 190], [74, 205], [72, 205], [75, 200], [74, 210], [74, 215], [77, 200], [75, 205], [73, 211], [72, 190], [71, 208], [74, 200], [77, 210], [75, 232], [75, 230], [75, 210], [78, 220], [78, 210], [74, 202], [76, 212], [78, 225], [76, 170], [70, 190], [72, 200], [80, 237], [74, 220], [74, 170], [71, 193], [70, 190], [72, 150], [71, 220], [74, 200], [71, 190], [72, 185], [71, 185], [74, 200], [69, 172], [76, 220], [75, 225], [75, 190], [76, 195], [73, 219], [76, 190], [73, 197], [77, 200], [73, 195], [72, 210], [72, 177], [77, 220], [77, 235], [71, 180], [74, 195], [74, 195], [73, 190], [78, 230], [75, 190], [73, 200], [70, 190], [74, 190], [72, 200], [73, 200], [73, 184], [75, 200], [75, 180], [74, 219], [76, 187], [73, 200], [74, 220], [75, 205], [75, 190], [72, 170], [73, 160], [73, 215], [72, 175], [74, 205], [78, 200], [76, 214], [73, 200], [74, 190], [75, 180], [70, 205], [75, 220], [71, 190], [72, 215], [78, 235], [75, 191], [73, 200], [73, 181], [71, 200], [75, 210], [77, 240], [72, 185], [69, 165], [73, 190], [74, 185], [72, 175], [70, 155], [75, 210], [70, 170], [72, 175], [72, 220], [74, 210], [73, 205], [74, 200], [76, 205], [75, 195], [80, 240], [72, 150], [75, 200], [73, 215], [74, 202], [74, 200], [73, 190], [75, 205], [75, 190], [71, 160], [73, 215], [75, 185], [74, 200], [74, 190], [72, 210], [74, 185], [74, 220], [74, 190], [73, 202], [76, 205], [75, 220], [72, 175], [73, 160], [73, 190], [73, 200], [72, 229], [72, 206], [72, 220], [72, 180], [71, 195], [75, 175], [75, 188], [74, 230], [73, 190], [75, 200], [79, 190], [74, 219], [76, 235], [73, 180], [74, 180], [74, 180], [72, 200], [74, 234], [74, 185], [75, 220], [78, 223], [74, 200], [74, 210], [74, 200], [77, 210], [70, 190], [73, 177], [74, 227], [73, 180], [71, 195], [75, 199], [71, 175], [72, 185], [77, 240], [74, 210], [70, 180], [77, 194], [73, 225], [72, 180], [76, 205], [71, 193], [76, 230], [78, 230], [75, 220], [73, 200], [78, 249], [74, 190], [79, 208], [75, 245], [76, 250], [72, 160], [75, 192], [75, 220], [70, 170], [72, 197], [70, 155], [74, 190], [71, 200], [76, 220], [73, 210], [76, 228], [71, 190], [69, 160], [72, 184], [72, 180], [69, 180], [73, 200], [69, 176], [73, 160], [74, 222], [74, 211], [72, 195], [71, 200], [72, 175], [72, 206], [76, 240], [76, 185], [76, 260], [74, 185], [76, 221], [75, 205], [71, 200], [72, 170], [71, 201], [73, 205], [75, 185], [76, 205], [75, 245], [71, 220], [75, 210], [74, 220], [72, 185], [73, 175], [73, 170], [73, 180], [73, 200], [76, 210], [72, 175], [76, 220], [73, 206], [73, 180], [73, 210], [75, 195], [75, 200], [77, 200], [73, 164], [72, 180], [75, 220], [70, 195], [74, 205], [72, 170], [80, 240], [71, 210], [71, 195], [74, 200], [74, 205], [73, 192], [75, 190], [76, 170], [73, 240], [77, 200], [72, 205], [73, 175], [77, 250], [76, 220], [71, 224], [75, 210], [73, 195], [74, 180], [77, 245], [71, 175], [72, 180], [73, 215], [69, 175], [73, 180], [70, 195], [74, 230], [76, 230], [73, 205], [73, 215], [75, 195], [73, 180], [79, 205], [74, 180], [73, 190], [74, 180], [77, 190], [75, 190], [74, 220], [73, 210], [77, 255], [73, 190], [77, 230], [74, 200], [74, 205], [73, 210], [77, 225], [74, 215], [77, 220], [75, 205], [77, 200], [75, 220], [71, 197], [74, 225], [70, 187], [79, 245], [72, 185], [72, 185], [70, 175], [74, 200], [74, 180], [72, 188], [73, 225], [72, 200], [74, 210], [74, 245], [76, 213], [82, 231], [74, 165], [74, 228], [70, 210], [73, 250], [73, 191], [74, 190], [77, 200], [72, 215], [76, 254], [73, 232], [73, 180], [72, 215], [74, 220], [74, 180], [71, 200], [72, 170], [75, 195], [74, 210], [74, 200], [77, 220], [70, 165], [71, 180], [73, 200], [76, 200], [71, 170], [75, 224], [74, 220], [72, 180], [76, 198], [79, 240], [76, 239], [73, 185], [76, 210], [78, 220], [75, 200], [76, 195], [72, 220], [72, 230], [73, 170], [73, 220], [75, 230], [71, 165], [76, 205], [70, 192], [75, 210], [74, 205], [75, 200], [73, 210], [71, 185], [71, 195], [72, 202], [73, 205], [73, 195], [72, 180], [69, 200], [73, 185], [78, 240], [71, 185], [73, 220], [75, 205], [76, 205], [70, 180], [74, 201], [77, 190], [75, 208], [79, 240], [72, 180], [77, 230], [73, 195], [75, 215], [75, 190], [75, 195], [73, 215], [73, 215], [76, 220], [77, 220], [75, 230], [70, 195], [71, 190], [71, 195], [75, 209], [74, 204], [69, 170], [70, 185], [75, 205], [72, 175], [75, 210], [73, 190], [72, 180], [72, 180], [72, 160], [76, 235], [75, 200], [74, 210], [69, 180], [73, 190], [72, 197], [72, 203], [75, 205], [77, 170], [76, 200], [80, 250], [77, 200], [76, 220], [79, 200], [71, 190], [75, 170], [73, 190], [76, 220], [77, 215], [73, 206], [76, 215], [70, 185], [75, 235], [73, 188], [75, 230], [70, 195], [69, 168], [71, 190], [72, 160], [72, 200], [73, 200], [70, 189], [70, 180], [73, 190], [76, 200], [75, 220], [72, 187], [73, 240], [79, 190], [71, 180], [72, 185], [74, 210], [74, 220], [74, 219], [72, 190], [76, 193], [76, 175], [72, 180], [72, 215], [71, 210], [72, 200], [72, 190], [70, 185], [77, 220], [74, 170], [72, 195], [76, 205], [71, 195], [76, 210], [71, 190], [73, 190], [70, 180], [73, 220], [73, 190], [72, 186], [71, 185], [71, 190], [71, 180], [72, 190], [72, 170], [74, 210], [74, 240], [74, 220], [71, 180], [72, 210], [75, 210], [72, 195], [71, 160], [72, 180], [72, 205], [72, 200], [72, 185], [74, 245], [74, 190], [77, 210], [75, 200], [73, 200], [75, 222], [73, 215], [76, 240], [72, 170], [77, 220], [75, 156], [72, 190], [71, 202], [71, 221], [75, 200], [72, 190], [73, 210], [73, 190], [71, 200], [70, 165], [75, 190], [71, 185], [76, 230], [73, 208], [68, 209], [71, 175], [72, 180], [74, 200], [77, 205], [72, 200], [76, 250], [78, 210], [81, 230], [72, 244], [73, 202], [76, 240], [72, 200], [72, 215], [74, 177], [76, 210], [73, 170], [76, 215], [75, 217], [70, 198], [71, 200], [74, 220], [72, 170], [73, 200], [76, 230], [76, 231], [73, 183], [71, 192], [68, 167], [71, 190], [71, 180], [74, 180], [77, 215], [69, 160], [72, 205], [76, 223], [75, 175], [76, 170], [75, 190], [76, 240], [72, 175], [74, 230], [76, 223], [74, 196], [72, 167], [75, 195], [78, 190], [77, 250], [70, 190], [72, 190], [79, 190], [74, 170], [71, 160], [68, 150], [77, 225], [75, 220], [71, 209], [72, 210], [70, 176], [72, 260], [72, 195], [73, 190], [72, 184], [74, 180], [72, 195], [72, 195], [75, 219], [72, 225], [73, 212], [74, 202], [72, 185], [78, 200], [75, 209], [72, 200], [74, 195], [75, 228], [75, 210], [76, 190], [74, 212], [74, 190], [73, 218], [74, 220], [71, 190], [74, 235], [75, 210], [76, 200], [74, 188], [76, 210], [76, 235], [73, 188], [75, 215], [75, 216], [74, 220], [68, 180], [72, 185], [75, 200], [71, 210], [70, 220], [72, 185], [73, 231], [72, 210], [75, 195], [74, 200], [70, 205], [76, 200], [71, 190], [82, 250], [72, 185], [73, 180], [74, 170], [71, 180], [75, 208], [77, 235], [72, 215], [74, 244], [72, 220], [73, 185], [78, 230], [77, 190], [73, 200], [73, 180], [73, 190], [73, 196], [73, 180], [76, 230], [75, 224], [70, 160], [73, 178], [72, 205], [73, 185], [75, 210], [74, 180], [73, 190], [73, 200], [76, 257], [73, 190], [75, 220], [70, 165], [77, 205], [72, 200], [77, 208], [74, 185], [75, 215], [75, 170], [75, 235], [75, 210], [72, 170], [74, 180], [71, 170], [76, 190], [71, 150], [75, 230], [76, 203], [83, 260], [75, 246], [74, 186], [76, 210], [72, 198], [72, 210], [75, 215], [75, 180], [72, 200], [77, 245], [73, 200], [72, 192], [70, 192], [74, 200], [72, 192], [74, 205], [72, 190], [71, 186], [70, 170], [71, 197], [76, 219], [74, 200], [76, 220], [74, 207], [74, 225], [74, 207], [75, 212], [75, 225], [71, 170], [71, 190], [74, 210], [77, 230], [71, 210], [74, 200], [75, 238], [77, 234], [76, 222], [74, 200], [76, 190], [72, 170], [71, 220], [72, 223], [75, 210], [73, 215], [68, 196], [72, 175], [69, 175], [73, 189], [73, 205], [75, 210], [70, 180], [70, 180], [74, 197], [75, 220], [74, 228], [74, 190], [73, 204], [74, 165], [75, 216], [77, 220], [73, 208], [74, 210], [76, 215], [74, 195], [75, 200], [73, 215], [76, 229], [78, 240], [75, 207], [73, 205], [77, 208], [74, 185], [72, 190], [74, 170], [72, 208], [71, 225], [73, 190], [75, 225], [73, 185], [67, 180], [67, 165], [76, 240], [74, 220], [73, 212], [70, 163], [75, 215], [70, 175], [72, 205], [77, 210], [79, 205], [78, 208], [74, 215], [75, 180], [75, 200], [78, 230], [76, 211], [75, 230], [69, 190], [75, 220], [72, 180], [75, 205], [73, 190], [74, 180], [75, 205], [75, 190], [73, 195]]

# Import numpy package
import numpy as np

# Create a 2D numpy array from baseball: np_baseball
np_baseball = np.array(baseball)

# Print out the shape of np_baseball
print(np_baseball.shape)

  • Subsetting 2D NumPy Arrays

If your 2D numpy array has a regular structure, i.e. each row and column has a fixed number of values, complicated ways of subsetting become very easy. Have a look at the code below where the elements "a" and "c" are extracted from a list of lists.

  1. # regular list of lists
  2. x = [["a", "b"], ["c", "d"]]
  3. [x[0][0], x[1][0]]
  4. # numpy
  5. import numpy as np
  6. np_x = np.array(x)
  7. np_x[:,0]

Remember that in Python, the first element is at index 0!

# baseball is available as a regular list of lists

# Import numpy package
import numpy as np

# Create np_baseball (2 cols)
np_baseball = np.array(baseball)

# Print out the 50th row of np_baseball
print(np_baseball[49,:])

# Select the entire second column of np_baseball: np_weight
np_weight = np_baseball[:,1]

# Print out height of 124th player
print(np_baseball[123,0])

  • 2D Arithmetic

You can combine matrices with single numbers, with vectors, and with other matrices.Execute the code below in the IPython shell and see if you understand:

  1. import numpy as np
  2. np_mat = np.array([[1, 2],
  3. [3, 4],
  4. [5, 6]])
  5. np_mat * 2
  6. np_mat + np.array([10, 10])
  7. np_mat + np_mat

Output:

print(np_mat * 2)
[[ 2 4]
[ 6 8]
[10 12]]

print(np_mat * 2)
[[ 2 4]
[ 6 8]
[10 12]]

print(np_mat * 2)
[[ 2 4]
[ 6 8]
[10 12]]

# baseball is available as a regular list of lists
# updated is available as 2D numpy array

# Import numpy package
import numpy as np

# Create np_baseball (3 cols)
np_baseball = np.array(baseball)

# Print out addition of np_baseball and updated
print(np_baseball + updated)

# Create numpy array: conversion. You want to convert the units of height and weight. As a first step, create a numpy array with three values: 0.0254, 0.453592 and 1. Name this array conversion.
conversion = [0.0254,0.453592,1]

# Print out product of np_baseball and conversion
print(np_baseball * conversion)

Intro to Python for Data Science Learning 7 - 2D NumPy Arrays的更多相关文章

  1. Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics

    NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...

  2. Intro to Python for Data Science Learning 6 - NumPy

    NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...

  3. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  4. Intro to Python for Data Science Learning 2 - List

    List from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-list ...

  5. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

  6. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  7. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  8. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  9. Intermediate Python for Data Science learning 3 - Customization

    Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...

随机推荐

  1. Python拷贝文件脚本

    author : headsen chen date : 2018-12-06  17:56:58 copy_file.py #!/usr/bin/env python from sys import ...

  2. python requests模块中返回时间elapsed解析

    一.问题: Python 中requests库在发送http请求时相当方便好用,但在使用时一直受一个问题困扰,怎么才能查看请求时长呢? 自己写时间函数再相减?NO,这个方法肯定不行. 二.解决: 好吧 ...

  3. 阻止form表单提交的问题

    阻止form表单提交这种场景可能在生活中,我们经常碰到,而在我们第一印象里面可能我们用return false 去阻止表单默认行为. 但是,有中情况我们用return false 不能阻止表单提交 & ...

  4. http模拟登陆及发请求

    首先声明下,如果服务端写入的cookie属性是HttpOnly的,程序是不能自动获取cookie的,需要人工登陆网站获取cookie再把cookie写死,如下图所示: http测试工具:http:// ...

  5. dubbo入门之helloWorld

    dubbo官方文档:http://dubbo.apache.org/zh-cn/docs/user/quick-start.html 基于spring coloud的demo:http://start ...

  6. vue--父组件主动获取子组件的方法

    父组件主动获取子组件的方法和属性 第一步:调用自组件的时候,给自组建定义一个Header <v-header ref='headerInfo'></v-header> 第二步: ...

  7. Pandas的append方法

    相当于添加一行记录,这个方法也是比较管用的: # 测试pandas.append方法 def use_pd_append(): df = pd.DataFrame([[1, 2], [3, 4]], ...

  8. UIGestureRecognizer和UITouch

    UIGestureRecognizer和UITouch是分别判断的,如果判定了是手势,那就不再触发UITouch事件,如果两者并存,则会先执行UITouch事件,之后如果确认是手势,不再执行UITou ...

  9. rank() over,dense_rank(),row_number() 的区别

    转自:https://jingyan.baidu.com/article/597035521ff2ec8fc107404b.html rank() over是的作用是查出指定条件后进行一个排名,但是有 ...

  10. webstorm的使用技巧——1

    由于光标是在使用中突然发生变化,推测是碰到了快捷键,因此断定有快捷键可以修改.后来,无意中碰到了“Insert”键,于是光标立即发生了变化,“黑块矩形”变成“小竖线”.由此知道,insert键可以使光 ...