Tensorflow在更新1.2版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(看这里),大大降低了吾等调包侠的开发难度,无论是fine-tuning还是该网络结构都方便了不少。这里讲的的是物体检测(object detection)API,这个库的说明文档很详细,可以的话直接看原文即可。

这个物体检测API提供了5种网络结构的预训练的weights,全部是用COCO数据集进行训练,可以在这里下载:分别是SSD+mobilenet, SSD+inception_v2, R-FCN+resnet101, faster RCNN+resnet101, faster RCNN+inception+resnet101。各个模型的精度和计算所需时间如下,具体测评细节可以看这篇文章

依赖包

Protobuf 2.6
Pillow 1.0
lxml
tf Slim
Jupyter notebook
Matplotlib # 用这个画图会比较慢,内存占用高,可以用cv2来代替
Tensorflow

API安装

$ pip install tensorflow-gpu
$ sudo apt-get install protobuf-compiler python-pil python-lxml
$ sudo pip install jupyter
$ sudo pip install matplotlib

因为使用protobuf来配置模型和训练参数,所以API正常使用必须先编译protobuf库

$ cd tensorflow/models
$ protoc object_detection/protos/*.proto --python_out=.

然后将models和slim(tf高级框架)加入python环境变量:

export PYTHONPATH=$PYTHONPATH:/your/path/to/tensorflow/models:/your/path/to/tensorflow/models/slim

最后测试安装:

python object_detection/builders/model_builder_test.py

fine-tuning

  1. 准备数据集

    以Pascal VOC数据集的格式为例:object_detection/create_pascal_tf_record.py提供了一个模板,将voc格式的数据保存到.record格式
python object_detection/create_pascal_tf_record.py \
--label_map_path=object_detection/data/pascal_label_map.pbtxt \ # 训练物品的品类和id
--data_dir=VOCdevkit --year=VOC2012 --set=train \
--output_path=pascal_train.record
python object_detection/create_pascal_tf_record.py \
--label_map_path=object_detection/data/pascal_label_map.pbtxt \
--data_dir=VOCdevkit --year=VOC2012 --set=val \
--output_path=pascal_val.record

其中--data_dir为训练集的目录。结构同Pascal VOC,如下:

    + VOCdevkit  # +为文件夹
+ JPEGImages
- 001.jpg # - 为文件
+ Annotations
- 001.xml
  1. 训练

    train和eval输入输出数据储存结构为:
    + input
- label_map.pbtxt file # 可以在object_detection/data/*.pbtxt找到样例
- train TFRecord file
- eval TFRecord file
+ models
+ modelA
- pipeline config file # 可以在object_detection/samples/configs/*.config下找到样例,定义训练参数和输入数据
+ train # 保存训练产生的checkpoint文件
+ eval

准备好上述文件后就可以直接调用train文件进行训练

python object_detection/train.py \
--logtostderr \
--pipeline_config_path=/your/path/to/models/modelA/pipeline config file \
--train_dir=/your/path/to/models/modelA/train
  1. 评估

    在训练开始以后,就可以运行eval来评估模型的效果。不过实际情况是eval模型也需要加载ckpt文件,因此也需要占用不小的显存,而一般训练的时候都会调整batch尽量利用显卡性能,所以想要实时运行train和eval的话需要调整好两者所需的内存。
python object_detection/eval.py \
--logtostderr \
--pipeline_config_path=/your/path/to/models/modelA/pipeline config file \
--checkpoint_dir=/your/path/to/models/modelA/train \
--eval_dir=/your/path/to/models/modelA/eval
  1. 监控

    通过tensorboard命令可以在浏览器很轻松的监控训练进程,在浏览器输入localhost:6006(默认)即可
tensorboard --logdir=/your/path/to/models/modelA  # 需要包含eval和train目录(.ckpt, .index, .meta, checkpoint, graph.pbtxt文件)

freeze model

在训练完成后需要将训练产生的最后一组.meta, .index, .ckpt, checkpoint文件。其中meta保存了graph和metadata,ckpt保存了网络的weights。而在生产环境中进行预测的时候是只需要模型和权重,不需要metadata,所以需要将其提出进行freeze操作,将所需的部分放到一个文件,方便之后的调用,也减少模型加载所需的内存。(在下载的预训练模型解压后可以找到4个文件,其中名为frozen_inference_graph.pb的文件就是freeze后产生的模型文件,比weights文件大,但是比weights和meta文件加起来要小不少。)

本来,tensorflow/python/tools/freeze_graph.py提供了freeze model的api,但是需要提供输出的final node names(一般是softmax之类的最后一层的激活函数命名),而object detection api提供提供了预训练好的网络,final node name并不好找,所以object_detection目录下还提供了export_inference_graph.py

python export_inference_graph.py \
--input_type image_tensor \
--pipeline_config_path /your/path/to/models/modelA/pipeline config file \
--checkpoint_path /your/path/to/models/modelA/train/model.ckpt-* \
--inference_graph_path /your/path/to/models/modelA/train/frozen_inference_graph.pb # 输出的文件名

模型调用

目录下提供了一个样例。这里只是稍作调整用cv2来显示图像。

import numpy as np
import os, sys
import tensorflow as tf
import cv2 MODEL_ROOT = "/home/arkenstone/tensorflow/workspace/models"
sys.path.append(MODEL_ROOT) # 应用和训练的目录在不同的地方 from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util MODEL_PATH = "/home/arkenstone/tensorflow/workspace/models/objectdetection/models/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017"
PATH_TO_CKPT = MODEL_PATH + '/frozen_inference_graph.pb' # frozen model path
PATH_TO_LABELS = os.path.join(MODEL_ROOT, 'object_detection/data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90 label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories) # 格式为{1:{'id': 1, 'name': 'person'}, 2: {'id': 2, 'name': 'bicycle'}, ...} # 模型加载:test.py
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') # 防止内存不足,限制sess内存使用比例
gpu_memory_fraction = 0.4
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
config = tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False, allow_soft_placement=True)
config.gpu_options.allow_growth = False def detect(image_path):
with detection_graph.as_default(): # 需要手动close sess
with tf.Session(graph=detection_graph, config=config) as sess:
image = cv2.imread(image_path)
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
new_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
cv2.imshow("test", new_img)
cv2.waitKey(0) if __name__ == '__main__':
detect(/your/test/image)

参考

https://github.com/tensorflow/models/tree/master/object_detection

https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

https://www.tensorflow.org/extend/tool_developers/

Tensorflow物体检测(Object Detection)API的使用的更多相关文章

  1. 【TensorFlow】获取object detection API训练模型的输出坐标

    如下图,谷歌开源的object detection API提供了五种网络结构的fine-tuning训练权重,方便我们针对目标检测的需求进行模型训练,本文详细介绍下导出训练模型后,如何获得目标检测框的 ...

  2. 【TensorFlow】使用Object Detection API 训练自己的数据集报错

    错误1:  训练正常开始后,能正常看到日志输出,但中途报错 ResourceExhaustedError (see above for traceback): OOM when allocating ...

  3. 第三十四节,目标检测之谷歌Object Detection API源码解析

    我们在第三十二节,使用谷歌Object Detection API进行目标检测.训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检 ...

  4. 基于ssd的手势识别模型(object detection api方式)

    [Tensorflow]Object Detection API-训练自己的手势识别模型 1. 安装tensorflow以及下载object detection api 1.安装tensorflow: ...

  5. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object De ...

  6. Tensorflow object detection API 搭建物体识别模型(四)

    四.模型测试 1)下载文件 在已经阅读并且实践过前3篇文章的情况下,读者会有一些文件夹.因为每个读者的实际操作不同,则文件夹中的内容不同.为了保持本篇文章的独立性,制作了可以独立运行的文件夹目标检测. ...

  7. Tensorflow object detection API 搭建物体识别模型(三)

    三.模型训练 1)错误一: 在桌面的目标检测文件夹中打开cmd,即在路径中输入cmd后按Enter键运行.在cmd中运行命令: python /your_path/models-master/rese ...

  8. Tensorflow object detection API 搭建物体识别模型(一)

    一.开发环境 1)python3.5 2)tensorflow1.12.0 3)Tensorflow object detection API :https://github.com/tensorfl ...

  9. Tensorflow object detection API 搭建物体识别模型(二)

    二.数据准备 1)下载图片 图片来源于ImageNet中的鲤鱼分类,下载地址:https://pan.baidu.com/s/1Ry0ywIXVInGxeHi3uu608g 提取码: wib3 在桌面 ...

随机推荐

  1. Java并发编程:volatile关键字解析<转>

    volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以 ...

  2. hive2.3.2安装使用

    hive的安装简单一些,使用也比较简单,基础hadoop搭建好之后,只要初始化一些目录和数据库就好了 安装需要做几件事: 1.设立一个数据源作为元数据存储的地方,默认是derby内嵌数据库,不过不允许 ...

  3. Redis PHP连接操作

    安装 在PHP程序中使用Redis,需要确保我们有Redis的PHP驱动程序和PHP安装设置在机器上.可以查看PHP教程教你如何在机器上安装PHP.现在,让我们来看看一下如何设置Redis的PHP驱动 ...

  4. SpringBoot使用端口运行

    通过java -jar app.jar --name="Spring" --server.port=9090方式来传递参数. 参数用--xxx=xxx的形式传递. 转自http:/ ...

  5. ssh 断开解决办法

    SSH连接总是隔一段时间没有输入时就断开,解决办法如下: 服务端配置sudo vi /etc/ssh/sshd_configClientAliveInterval 60     #服务端主动向客户端请 ...

  6. Java设计模式(20)观察者模式(Observer模式)

    Java深入到一定程度,就不可避免的碰到设计模式(design pattern)这一概念,了解设计模式,将使自己对java中的接口或抽象类应用有更深的理解.设计模式在java的中型系统中应用广泛,遵循 ...

  7. Qt Creator设置多核编译(-j8参数)

    In the qtcreator go to the "Projects tab" and set "Make arguments" as you like: ...

  8. Linux source命令

    Linux source命令   Linux source命令: 通常用法:source filepath 或 . filepath 功能:使当前shell读入路径为filepath的shell文件并 ...

  9. OpenGL基本框架与三维对象绘制

    上次我们介绍了OpenGL的环境构建和二维对象的绘制,这次我们来讲讲三维对象的绘制: 绘制代码如下: Github代码仓库 // opengltest2.cpp : Defines the entry ...

  10. (实用)Ubuntu 开启NFS服务

    本文介绍如何在Ubuntu下开启NFS文件系统,从而挂载网络上其他机器的文件系统. NFS, Network File System, 即网络文件系统,通常NFS有提供者和使用者,提供者export自 ...