(学习这部分内容大约需要40分钟)

摘要

在贝叶斯参数估计中, 除了先验是特别选定的情况下, 通常要积分掉所有模型参数是没有解析解的. 在这种情况下, 最大后验(maximum a posteriori, MAP)估计是一种常用的近似. 在MAP中, 我们选择最大化后验的参数. 尽管这种方法提供了计算方便, 但它也是有缺点的, 比如对于重新参数化(reparameterization)它不是不变的, 并且MAP估计可能不是后验的代表.

预备知识

学习MAP参数估计需要以下预备知识:

学习目标

  • 知道MAP参数估计的定义
  • 为什么后验的众数可能不是后验的代表点?
  • 为什么MAP估计对于重新参数化(reparameterization)不是不变的?

核心资源

(阅读/观看其中一个资源)

付费

  • Machine Learning: a Probabilistic Perspective(MLAPP)
    简介: 一本非常全面的研究生机器学习教材
    位置: Section 5.2.1, pages 149-152
    网站
    作者: Kevin P. Murphy
  • Probabilistic Graphical Models: Principles and Techniques
    简介: 一本非常全面的研究生概率AI教材
    位置: Section 17.4.4, pages 751-754
    网站
    作者: Daphne Koller,Nir Friedman

返回贝叶斯机器学习路线图

MAP参数估计的更多相关文章

  1. something about Parameter Estimation (参数估计)

    点估计 Point Estimation 最大似然估计(Maximum Likelihood Estimate —— MLE):视θ为固定的参数,假设存在一个最佳的参数(或参数的真实值是存在的),目的 ...

  2. PGM:贝叶斯网的参数估计

    http://blog.csdn.net/pipisorry/article/details/52578631 本文讨论(完备数据的)贝叶斯网的参数估计问题:贝叶斯网的MLE最大似然估计和贝叶斯估计. ...

  3. 频率学派与贝叶斯学派(先验分布与后验分布,MLE和MAP)

    频率学派(古典学派)和贝叶斯学派是数理统计领域的两大流派. 这两大流派对世界的认知有本质的不同:频率学派认为世界是确定的,有一个本体,这个本体的真值是不变的,我们的目标就是要找到这个真值或真值所在的范 ...

  4. 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...

  5. 【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    [机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximu ...

  6. 【机器学习基本理论】详解最大后验概率估计(MAP)的理解

    [机器学习基本理论]详解最大后验概率估计(MAP)的理解 https://blog.csdn.net/weixin_42137700/article/details/81628065 最大似然估计(M ...

  7. 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用

    最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...

  8. 机器学习(二十五)— 极大似然估计(MLE)、贝叶斯估计、最大后验概率估计(MAP)区别

    最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参 ...

  9. 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法

    1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...

随机推荐

  1. Java编程的逻辑 (75) - 并发容器 - 基于SkipList的Map和Set

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  2. Java编程的逻辑 (60) - 随机读写文件及其应用 - 实现一个简单的KV数据库

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  3. iptables配置文件/etc/sysconfig/iptables内容详解

    #头两行是注释说明# Firewall configuration written by system-config-securitylevel# Manual customization of th ...

  4. android开发(33) 让 actionbar 透明2

    让 actionbar 的背景 透明 我需要一个 透明的actionbar ,找到如下方法实现: 1. 首先,设置ActionBar 浮动到主界面上来. 2. 然后,设置ActionBar的背景色,透 ...

  5. sublime text 2使用方法

    笔者用过的一些软件用来写Verilog代码,比如notepad+,ultra,editplus等,近日在群里看到大家在讨论一个比较有意思的软件,sublime text,才发现有种相见恨晚的感觉,其实 ...

  6. Self_Java + Selenium + Maven 环境搭建步骤

    转自:http://www.jianshu.com/p/3c05e8c9ee81 我们使用Java+Selenium WebDriver 来进行环境的搭建,同样分为两个部分: 安装Java 和 int ...

  7. mac下配置android环境变量

    下面我将一下mac环境下的配置步骤: 1.在本地目录(home directory)中创建文件.bash_profile2.在文件中写入以下内容:export PATH=${PATH}:/Users/ ...

  8. Python之collections.defaultdict

    转自:http://www.jb51.net/article/88147.htm

  9. [转]浅谈Android五大布局(二)——RelativeLayout和TableLayout

    在浅谈Android五大布局(一)中已经描述了LinearLayout(线性布局).FrameLayout(单帧布局)和AbsoulteLayout(绝对布局)三种布局结构,剩下的两种布局Relati ...

  10. discuz 手机上看帖子图片显示“[viewimg]”如何修改?

    手机bbs上看帖子,如果帖子中有外网图片显示的是“[viewimg]”,而不是图片pre_forum_thread 主题表pre_forum_post 帖子表 库表pre_forum_post中字段m ...