Redis基础知识点面试手册
Redis基础知识点面试手册
Redis有哪些数据结构?
使用过Redis分布式锁么,它是什么回事?
假如Redis里面有1亿个key,其中有10w个key是以某个固定的已知的前缀开头的,如果将它们全部找出来?
使用过Redis做异步队列么,你是怎么用的?
基础
概述
Redis 是速度非常快的非关系型(NoSQL)内存键值数据库,可以存储键和五种不同类型的值之间的映射。
键的类型只能为字符串
值支持的五种类型数据类型为:字符串、列表、集合、有序集合、散列表。
Redis 支持很多特性,例如将内存中的数据持久化到硬盘中,使用复制来扩展读性能,使用分片来扩展写性能。
数据类型
数据类型可以存储的值操作STRING字符串、整数或者浮点数对整个字符串或者字符串的其中一部分执行操作</br> 对整数和浮点数执行自增或者自减操作LIST列表从两端压入或者弹出元素</br> 读取单个或者多个元素</br> 进行修剪,只保留一个范围内的元素SET无序集合添加、获取、移除单个元素</br> 检查一个元素是否存在于集合中</br> 计算交集、并集、差集</br> 从集合里面随机获取元素HASH包含键值对的无序散列表添加、获取、移除单个键值对</br> 获取所有键值对</br> 检查某个键是否存在ZSET有序集合添加、获取、删除元素</br> 根据分值范围或者成员来获取元素</br> 计算一个键的排名
STRING
image.png
> set hello world
OK
> get hello
"world"
> del hello
(integer) 1
> get hello
(nil)
LIST
image.png
> rpush list-key item
(integer) 1
> rpush list-key item2
(integer) 2
> rpush list-key item
(integer) 3
> lrange list-key 0 -1
1) "item"
2) "item2"
3) "item"
> lindex list-key 1
"item2"
> lpop list-key
"item"
> lrange list-key 0 -1
1) "item2"
2) "item"
SET
image.png
> sadd set-key item
(integer) 1
> sadd set-key item2
(integer) 1
> sadd set-key item3
(integer) 1
> sadd set-key item
(integer) 0
> smembers set-key
1) "item"
2) "item2"
3) "item3"
> sismember set-key item4
(integer) 0
> sismember set-key item
(integer) 1
> srem set-key item2
(integer) 1
> srem set-key item2
(integer) 0
> smembers set-key
1) "item"
2) "item3"
HASH
image.png
> hset hash-key sub-key1 value1
(integer) 1
> hset hash-key sub-key2 value2
(integer) 1
> hset hash-key sub-key1 value1
(integer) 0
> hgetall hash-key
1) "sub-key1"
2) "value1"
3) "sub-key2"
4) "value2"
> hdel hash-key sub-key2
(integer) 1
> hdel hash-key sub-key2
(integer) 0
> hget hash-key sub-key1
"value1"
> hgetall hash-key
1) "sub-key1"
2) "value1"
ZSET(SORTEDSET)
image.png
> zadd zset-key 728 member1
(integer) 1
> zadd zset-key 982 member0
(integer) 1
> zadd zset-key 982 member0
(integer) 0
> zrange zset-key 0 -1 withscores
1) "member1"
2) "728"
3) "member0"
4) "982"
> zrangebyscore zset-key 0 800 withscores
1) "member1"
2) "728"
> zrem zset-key member1
(integer) 1
> zrem zset-key member1
(integer) 0
> zrange zset-key 0 -1 withscores
1) "member0"
2) "982"
zset是set的一个升级版本,他在set的基础上增加了一个顺序属性,这一属性在添加修改元素的时候可以指定,每次指定后,zset会自动重新按新的值调整顺序。 可以对指定键的值进行排序权重的设定,它应用排名模块比较多。
跳跃表(shiplist)是实现sortset(有序集合)的底层数据结构之一
另外还可以用 Sorted Sets 来做带权重的队列,比如普通消息的 score 为1,重要消息的 score 为2,然后工作线程可以选择按 score的倒序来获取工作任务,让重要的任务优先执行。
数据结构
字典
dictht 是一个散列表结构,使用拉链法保存哈希冲突的 dictEntry。
/* This is our hash table structure. Every dictionary has two of this as we
* implement incremental rehashing, for the old to the new table. */
typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
typedef struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next;
} dictEntry;
Redis 的字典 dict 中包含两个哈希表 dictht,这是为了方便进行 rehash 操作。
在扩容时,将其中一个 dictht 上的键值对 rehash 到另一个 dictht 上面,完成之后释放空间并交换两个 dictht 的角色。
typedef struct dict {
dictType *type;
void *privdata;
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
} dict;
rehash 操作不是一次性完成,而是采用渐进方式,这是为了避免一次性执行过多的 rehash 操作给服务器带来过大的负担。
渐进式 rehash 通过记录 dict 的 rehashidx 完成,它从 0 开始,然后每执行一次 rehash 都会递增。例如在一次 rehash 中,要把 dict[0] rehash 到 dict[1],这一次会把 dict[0] 上 table[rehashidx] 的键值对 rehash 到 dict[1] 上,dict[0] 的 table[rehashidx] 指向 null,并令 rehashidx++。
在 rehash 期间,每次对字典执行添加、删除、查找或者更新操作时,都会执行一次渐进式 rehash。
采用渐进式 rehash 会导致字典中的数据分散在两个 dictht 上,因此对字典的操作也需要到对应的 dictht 去执行。
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
int empty_visits = n * 10; /* Max number of empty buckets to visit. */
if (!dictIsRehashing(d)) return 0;
while (n-- && d->ht[0].used != 0) {
dictEntry *de, *nextde;
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(d->ht[0].size > (unsigned long) d->rehashidx);
while (d->ht[0].table[d->rehashidx] == NULL) {
d->rehashidx++;
if (--empty_visits == 0) return 1;
}
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while (de) {
uint64_t h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
}
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;
}
/* Check if we already rehashed the whole table... */
if (d->ht[0].used == 0) {
zfree(d->ht[0].table);
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;
return 0;
}
/* More to rehash... */
return 1;
}
跳跃表
什么是跳跃表?(程序员小灰)http://blog.jobbole.com/111731/
https://blog.csdn.net/qq910894904/article/details/37883953
来看看跳跃表的复杂度分析:
空间复杂度: O(n) (期望)
跳跃表高度: O(logn) (期望)
相关操作的时间复杂度:
查找: O(logn) (期望)
插入: O(logn) (期望)
删除: O(logn) (期望)
其效率可比拟于二叉查找树(对于大于数操作需要O(log n)平均时间),并且不需要像二叉树一样过段时间重新平衡。
它是按层建造的。底层是一个普通的有序链表。每个更高层都充当下面列表的“快速跑道”,这里在层i中的元素按概率l/p出现在层i+1中。
平均起来,每个元素都在p/(p-1)个列表中出现,而最高层的元素(通常是在跳跃列表前段的一个特殊的头元素)在O(logp n)个列表中出现。
调节p的大小可以在内存消耗和时间消耗上进行折中。
image.png
在查找时,从上层指针开始查找,找到对应的区间之后再到下一层去查找。下图演示了查找 22 的过程。
image.png
与红黑树等平衡树相比,跳跃表具有以下优点:
插入速度非常快速,因为不需要进行旋转等操作来维护平衡性;
更容易实现;
支持无锁操作。
使用场景
会话缓存
在分布式场景下具有多个应用服务器,可以使用 Redis 来统一存储这些应用服务器的会话信息。
当应用服务器不再存储用户的会话信息,也就不再具有状态,一个用户可以请求任意一个应用服务器。
缓存
将热点数据放到内存中,设置内存的最大使用量以及过期淘汰策略来保证缓存的命中率。
计数器
可以对 String 进行自增自减运算,从而实现计数器功能。
Redis 这种内存型数据库的读写性能非常高,很适合存储频繁读写的计数量。
查找表
例如 DNS 记录就很适合使用 Redis 进行存储。
查找表和缓存类似,也是利用了 Redis 快速的查找特性。但是查找表的内容不能失效,而缓存的内容可以失效,因为缓存不作为可靠的数据来源。
消息队列
List 是一个双向链表,可以通过 lpop 和 lpush 写入和读取消息。
不过最好使用 Kafka、RabbitMQ 等消息中间件。
分布式 Session
多个应用服务器的 Session 都存储到 Redis 中来保证 Session 的一致性。
分布式锁
分布式锁实现 在分布式场景下,无法使用单机环境下的锁来对多个节点上的进程进行同步。
可以使用 Reids 自带的 SETNX 命令实现分布式锁,除此之外,还可以使用官方提供的 RedLock 分布式锁实现。
其它
Set 可以实现交集、并集等操作,从而实现共同好友等功能。
ZSet 可以实现有序性操作,从而实现排行榜等功能。
Redis 与 Memcached 对比
image.png
数据类型
Memcached 仅支持字符串类型,而 Redis 支持五种不同种类的数据类型,使得它可以更灵活地解决问题。
数据持久化
Redis 支持两种持久化策略:RDB 快照和 AOF 日志,而 Memcached 不支持持久化。
单线程
https://www.cnblogs.com/syyong/p/6231326.html
Redis快的主要原因是:
完全基于内存
数据结构简单,对数据操作也简单
使用多路 I/O 复用模型
单进程单线程好处
代码更清晰,处理逻辑更简单
不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗
不存在多进程或者多线程导致的切换而消耗CPU
单进程单线程弊端
无法发挥多核CPU性能,不过可以通过在单机开多个Redis实例来完善;
其他一些优秀的开源软件采用的模型
多进程单线程模型:Nginx
单进程多线程模型:Memcached
分布式
Memcached 不支持分布式,只能通过在客户端使用像一致性哈希这样的分布式算法来实现分布式存储,这种方式在存储和查询时都需要先在客户端计算一次数据所在的节点。
Redis Cluster 实现了分布式的支持。采用虚拟槽。(为何不需要计算了?不懂)
内存管理机制
在 Redis 中,并不是所有数据都一直存储在内存中,可以将一些很久没用的 value 交换到磁盘。而Memcached 的数据则会一直在内存中。
Memcached 将内存分割成特定长度的块来存储数据,以完全解决内存碎片的问题,但是这种方式会使得内存的利用率不高,例如块的大小为 128 bytes,只存储 100 bytes 的数据,那么剩下的 28 bytes 就浪费掉了。
键的过期时间
Redis 可以为每个键设置过期时间,当键过期时,会自动删除该键。
对于散列表这种容器,只能为整个键设置过期时间(整个散列表),而不能为键里面的单个元素设置过期时间。
数据淘汰策略
可以设置内存最大使用量,当内存使用量超过时施行淘汰策略,具体有 6 种淘汰策略。
策略描述volatile-lru从已设置过期时间的数据集中挑选最近最少使用的数据淘汰volatile-ttl从已设置过期时间的数据集中挑选将要过期的数据淘汰volatile-random从已设置过期时间的数据集中任意选择数据淘汰allkeys-lru从所有数据集中挑选最近最少使用的数据淘汰allkeys-random从所有数据集中任意选择数据进行淘汰noeviction禁止驱逐数据
作为内存数据库,出于对性能和内存消耗的考虑,Redis 的淘汰算法实际实现上并非针对所有 key,而是抽样一小部分并且从中选出被淘汰的 key。
使用 Redis 缓存数据时,为了提高缓存命中率,需要保证缓存数据都是热点数据。可以将内存最大使用量设置为热点数据占用的内存量,然后启用 allkeys-lru 淘汰策略,将最近最少使用的数据淘汰。
Redis 4.0 引入了 volatile-lfu 和 allkeys-lfu 淘汰策略,LFU 策略通过统计访问频率,将访问频率最少的键值对淘汰。
持久化
Redis 是内存型数据库,为了保证数据在断电后不会丢失,需要将内存中的数据持久化到硬盘上。
https://my.oschina.net/davehe/blog/174662
RDB 快照持久化
将某个时间点的所有数据都存放到硬盘上。
可以将快照复制到其它服务器从而创建具有相同数据的服务器副本。
如果系统发生故障,将会丢失最后一次创建快照之后的数据。
如果数据量很大,保存快照的时间会很长。
AOF 持久化
将写命令添加到 AOF 文件(Append Only File)的末尾。
对硬盘的文件进行写入时,写入的内容首先会被存储到缓冲区,然后由操作系统决定什么时候将该内容同步到硬盘,用户可以调用 file.flush() 方法请求操作系统尽快将缓冲区存储的数据同步到硬盘。可以看出写入文件的数据不会立即同步到硬盘上,在将写命令添加到 AOF 文件时,要根据需求来保证何时同步到硬盘上。
有以下同步选项:
选项同步频率always每个写命令都同步everysec每秒同步一次no让操作系统来决定何时同步
always 选项会严重减低服务器的性能;
everysec 选项比较合适,可以保证系统奔溃时只会丢失一秒左右的数据,并且 Redis 每秒执行一次同步对服务器性能几乎没有任何影响;
no 选项并不能给服务器性能带来多大的提升,而且也会增加系统奔溃时数据丢失的数量。
随着服务器写请求的增多,AOF 文件会越来越大。Redis 提供了一种将 AOF 重写的特性,能够去除 AOF 文件中的冗余写命令,使得 AOF 文件的体积不会超出保存数据集状态所需的实际大小。
如果 AOF 文件出错了,怎么办?
服务器可能在程序正在对 AOF 文件进行写入时停机, 如果停机造成了 AOF 文件出错(corrupt), 那么 Redis 在重启时会拒绝载入这个 AOF 文件, 从而确保数据的一致性不会被破坏。
发布与订阅
订阅者订阅了频道之后,发布者向频道发送字符串消息会被所有订阅者接收到。
某个客户端使用 SUBSCRIBE 订阅一个频道,其它客户端可以使用 PUBLISH 向这个频道发送消息。
发布与订阅模式和观察者模式有以下不同:
观察者模式中,观察者和主题都知道对方的存在;而在发布与订阅模式中,发布者与订阅者不知道对方的存在,它们之间通过频道进行通信。
观察者模式是同步的,当事件触发时,主题会去调用观察者的方法;而发布与订阅模式是异步的;
事务
http://www.runoob.com/redis/redis-transactions.html
事务中的多个命令被一次性发送给服务器,而不是一条一条发送,这种方式被称为流水线,它可以减少客户端与服务器之间的网络通信次数从而提升性能。
Redis 最简单的事务实现方式是使用 MULTI 和 EXEC 命令将事务操作包围起来。
它先以 MULTI 开始一个事务, 然后将多个命令入队到事务中, 最后由 EXEC 命令触发事务, 一并执行事务中的所有命令
单个 Redis 命令的执行是原子性的,但 Redis 没有在事务上增加任何维持原子性的机制,所以 Redis 事务的执行并不是原子性的。
事务可以理解为一个打包的批量执行脚本,但批量指令并非原子化的操作,中间某条指令的失败不会导致前面已做指令的回滚,也不会造成后续的指令不做。
事件
Redis 服务器是一个事件驱动程序。
文件事件
服务器通过套接字与客户端或者其它服务器进行通信,文件事件就是对套接字操作的抽象。
Redis 基于 Reactor 模式开发了自己的网络时间处理器,使用 I/O 多路复用程序来同时监听多个套接字,并将到达的时间传送给文件事件分派器,分派器会根据套接字产生的事件类型调用响应的时间处理器。
时间事件
服务器有一些操作需要在给定的时间点执行,时间事件是对这类定时操作的抽象。
时间事件又分为:
定时事件:是让一段程序在指定的时间之内执行一次;
周期性事件:是让一段程序每隔指定时间就执行一次。
Redis 将所有时间事件都放在一个无序链表中,通过遍历整个链表查找出已到达的时间事件,并调用响应的事件处理器。
事件的调度与执行
服务器需要不断监听文件事件的套接字才能得到待处理的文件事件,但是不能一直监听,否则时间事件无法在规定的时间内执行,因此监听时间应该根据距离现在最近的时间事件来决定。
事件调度与执行由 aeProcessEvents 函数负责,伪代码如下:
def aeProcessEvents():
# 获取到达时间离当前时间最接近的时间事件
time_event = aeSearchNearestTimer()
# 计算最接近的时间事件距离到达还有多少毫秒
remaind_ms = time_event.when - unix_ts_now()
# 如果事件已到达,那么 remaind_ms 的值可能为负数,将它设为 0
if remaind_ms < 0:
remaind_ms = 0
# 根据 remaind_ms 的值,创建 timeval
timeval = create_timeval_with_ms(remaind_ms)
# 阻塞并等待文件事件产生,最大阻塞时间由传入的 timeval 决定
aeApiPoll(timeval)
# 处理所有已产生的文件事件
procesFileEvents()
# 处理所有已到达的时间事件
processTimeEvents()
将 aeProcessEvents 函数置于一个循环里面,加上初始化和清理函数,就构成了 Redis 服务器的主函数,伪代码如下:
def main():
# 初始化服务器
init_server()
# 一直处理事件,直到服务器关闭为止
while server_is_not_shutdown():
aeProcessEvents()
# 服务器关闭,执行清理操作
clean_server()
从事件处理的角度来看,服务器运行流程如下:
image.png
复制(增强读性能)
通过使用 slaveof host port 命令来让一个服务器成为另一个服务器的从服务器。
一个从服务器只能有一个主服务器,并且不支持主主复制。
连接过程
主服务器创建快照文件,发送给从服务器,并在发送期间使用缓冲区记录执行的写命令。快照文件发送完毕之后,开始向从服务器发送存储在缓冲区中的写命令;
从服务器丢弃所有旧数据,载入主服务器发来的快照文件,之后从服务器开始接受主服务器发来的写命令;
主服务器每执行一次写命令,就向从服务器发送相同的写命令。
主从链
随着负载不断上升,主服务器可能无法很快地更新所有从服务器,或者重新连接和重新同步从服务器将导致系统超载。为了解决这个问题,可以创建一个中间层来分担主服务器的复制工作。中间层的服务器是最上层服务器的从服务器,又是最下层服务器的主服务器。
image.png
Sentinel(哨兵)
Sentinel(哨兵)可以监听主服务器,并在主服务器进入下线状态时,自动从从服务器中选举出新的主服务器。
分片(增强写性能)
分片是将数据划分为多个部分的方法,可以将数据存储到多台机器里面.
主要有三种分片方式:
客户端分片:客户端使用一致性哈希等算法决定键应当分布到哪个节点。
代理分片:将客户端请求发送到代理上,由代理转发请求到正确的节点上。
服务器分片:Redis Cluster。
Redis-cluster (Redis分布式)
https://blog.csdn.net/chunlongyu/article/details/53339288
但从Redis 3.0开始,引入了Redis Cluster,从此Redis进入了真正的“分布式集群“时代。
image.png
P2P架构
image.png
为什么是16384?
很显然,我们需要维护节点和槽之间的映射关系,每个节点需要知道自己有哪些槽,并且需要在结点之间传递这个消息。
为了节省存储空间,每个节点用一个Bitmap来存放其对应的槽: 2k = 2*1024 *8 = 16384,也就是说,每个结点用2k的内存空间,总共16384个比特位,就可以存储该结点对应了哪些槽。然后这2k的信息,通过Gossip协议,在结点之间传递。
客户端存储路由信息
对于客户端来说,维护了一个路由表:每个槽在哪台机器上。这样存储(key, value)时,根据key计算出槽,再根据槽找到机器。
无损扩容
虽然Hash环(Memcached)可以减少扩容时失效的key的数量,但毕竟有丢失。而在redis-cluster中,当新增机器之后,槽会在机器之间重新分配,同时被影响的数据会自动迁移,从而做到无损扩容。
这里可以结合补充知识点-缓存-一致性哈希来一起理解。虚拟槽改变的是槽的分配,一致性哈希则会使旁边的节点key失效。
主从复制
redis-cluster也引入了master-slave机制,从而提供了fail-over机制,这很大程度上解决了“缓存雪崩“的问题。关于这个,后面有机会再详细阐述。
https://blog.csdn.net/men_wen/article/details/72853078
image.png
Redis集群相对单机在功能上有一定限制。
key批量操作支持有限。如:MSET``MGET,目前只支持具有相同slot值的key执行批量操作。
key事务操作支持有限。支持多key在同一节点上的事务操作,不支持分布在多个节点的事务功能。
key作为数据分区的最小粒度,因此不能将一个大的键值对象映射到不同的节点。如:hash、list。
不支持多数据库空间。单机下Redis支持16个数据库,集群模式下只能使用一个数据库空间,即db 0。
复制结构只支持一层,不支持嵌套树状复制结构。
十四、一个简单的论坛系统分析
该论坛系统功能如下:
可以发布文章;
可以对文章进行点赞;
在首页可以按文章的发布时间或者文章的点赞数进行排序显示。
文章信息
文章包括标题、作者、赞数等信息,在关系型数据库中很容易构建一张表来存储这些信息,在 Redis 中可以使用 HASH 来存储每种信息以及其对应的值的映射。
Redis 没有关系型数据库中的表这一概念来将同种类型的数据存放在一起,而是使用命名空间的方式来实现这一功能。键名的前面部分存储命名空间,后面部分的内容存储 ID,通常使用 : 来进行分隔。例如下面的 HASH 的键名为 article:92617,其中 article 为命名空间,ID 为 92617。
image.png
点赞功能
当有用户为一篇文章点赞时,除了要对该文章的 votes 字段进行加 1 操作,还必须记录该用户已经对该文章进行了点赞,防止用户点赞次数超过 1。可以建立文章的已投票用户集合来进行记录。
为了节约内存,规定一篇文章发布满一周之后,就不能再对它进行投票,而文章的已投票集合也会被删除,可以为文章的已投票集合设置一个一周的过期时间就能实现这个规定。
image.png
对文章进行排序
为了按发布时间和点赞数进行排序,可以建立一个文章发布时间的有序集合和一个文章点赞数的有序集合。(下图中的 score 就是这里所说的点赞数;下面所示的有序集合分值并不直接是时间和点赞数,而是根据时间和点赞数间接计算出来的)
image.png
Redis经典面试题
Redis有哪些数据结构?
字符串String、字典Hash、列表List、集合Set、有序集合SortedSet。
如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog、Geo、Pub/Sub。
如果你说还玩过Redis Module,像BloomFilter,RedisSearch,Redis-ML,面试官得眼睛就开始发亮了。
使用过Redis分布式锁么,它是什么回事?
先拿setnx来争抢锁,抢到之后,再用expire给锁加一个过期时间防止锁忘记了释放。
这时候对方会告诉你说你回答得不错,然后接着问如果在setnx之后执行expire之前进程意外crash或者要重启维护了,那会怎么样?
这时候你要给予惊讶的反馈:唉,是喔,这个锁就永远得不到释放了。紧接着你需要抓一抓自己得脑袋,故作思考片刻,好像接下来的结果是你主动思考出来的,然后回答:我记得set指令有非常复杂的参数,这个应该是可以同时把setnx和expire合成一条指令来用的。对方这时会显露笑容,心里开始默念:摁,这小子还不错。
假如Redis里面有1亿个key,其中有10w个key是以某个固定的已知的前缀开头的,如果将它们全部找出来?
使用keys指令可以扫出指定模式的key列表。
对方接着追问:如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?
这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。
使用过Redis做异步队列么,你是怎么用的?
一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。
如果对方追问可不可以不用sleep呢?list还有个指令叫blpop,在没有消息的时候,它会阻塞住直到消息到来。
如果对方追问能不能生产一次消费多次呢?使用pub/sub主题订阅者模式,可以实现1:N的消息队列。
如果对方追问pub/sub有什么缺点?
在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。
如果对方追问redis如何实现延时队列?
使用sortedset,拿时间戳作为score,消息内容作为key调用zadd来生产消息,消费者用zrangebyscore指令获取N秒之前的数据轮询进行处理。
如果有大量的key需要设置同一时间过期,一般需要注意什么?
如果大量的key过期时间设置的过于集中,到过期的那个时间点,redis可能会出现短暂的卡顿现象。一般需要在时间上加一个随机值,使得过期时间分散一些。
Redis如何做持久化的?
bgsave做镜像全量持久化,aof做增量持久化。
因为bgsave会耗费较长时间,不够实时,在停机的时候会导致大量丢失数据,所以需要aof来配合使用。在redis实例重启时,会使用bgsave持久化文件重新构建内存,再使用aof重放近期的操作指令来实现完整恢复重启之前的状态。
对方追问那如果突然机器掉电会怎样?取决于aof日志sync属性的配置,如果不要求性能,在每条写指令时都sync一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync是不现实的,一般都使用定时sync,比如1s1次,这个时候最多就会丢失1s的数据。
对方追问bgsave的原理是什么?
你给出两个词汇就可以了,fork和cow。fork是指redis通过创建子进程来进行bgsave操作,cow指的是copy on write,子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据会逐渐和子进程分离开来。
Pipeline有什么好处,为什么要用pipeline?
可以将多次IO往返的时间缩减为一次,前提是pipeline执行的指令之间没有因果相关性。使用redis-benchmark进行压测的时候可以发现影响redis的QPS峰值的一个重要因素是pipeline批次指令的数目。
Redis的同步机制了解么?
Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave,并同时将后续修改操作记录到内存buffer,待完成后将rdb文件全量同步到复制节点,复制节点接受完成后将rdb镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。
是否使用过Redis集群,集群的原理是什么?
Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。
Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。
参考与拓展阅读
Redis基础知识点面试手册的更多相关文章
- Redis 基础知识点总结
关系型数据库 VS 非关系型数据库(NoSQL) 关系型数据库 我们过去使用的 mysql.Oracle 都属于关系型数据库.关系型数据库的特点是数据表之间可以存在联系,表内每列数据也存在关联,同时支 ...
- [转帖]《吊打面试官》系列-Redis基础
<吊打面试官>系列-Redis基础 https://www.cnblogs.com/aobing/archive/2019/11/07/11811194.html 你知道的越多,你不知 ...
- linux redis基础应用 主从服务器配置
Redis基础应用 redis是一个开源的可基于内存可持久化的日志型,key-value数据库redis的存储分为内存存储,磁盘存储和log文件三部分配置文件中有三个参数对其进行配置 优势:和memc ...
- Redis基础用法、高级特性与性能调优以及缓存穿透等分析
一.Redis介绍 Redis是一个开源的,基于内存的结构化数据存储媒介,可以作为数据库.缓存服务或消息服务使用.Redis支持多种数据结构,包括字符串.哈希表.链表.集合.有序集合.位图.Hype ...
- Java基础知识点(一)
前言:本篇随笔,主要记录Java的基础知识点,不管是用于项目或者面试中,笔者认为都非常有用,所以将持续更新...... 1.Java的访问权限 Java中有四种访问权限:默认访问权限.public.p ...
- 可能是全网最好的MySQL重要知识点 | 面试必备
可能是全网最好的MySQL重要知识点 | 面试必备 mp.weixin.qq.com 点击蓝色“程序猿DD”关注我 回复“资源”获取独家整理的学习资料! 标题有点标题党的意思,但希望你在看了文章之后 ...
- 非常全的Linux基础知识点
Linux是每个后端程序员必须要掌握的系统,今天小编就给你分享一篇Linux基础知识点大全,看看你知道多少? 一. 从认识操作系统开始 1.1 操作系统简介 我通过以下四点介绍什么操作系统: 操作系统 ...
- redis基础知识详解
一.redis基础知识 1.Redis是什么Redis是一个开源的key-value存储系统. 和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表 ...
- 最全Python基础知识点梳理
本文主要介绍一些平时经常会用到的python基础知识点,用于加深印象,也算是对于学习这门语言的一个总结与回顾.python的详细语法介绍可以查看官方编程手册,也有一些在线网站可以学习 python语言 ...
随机推荐
- Linux服务器配置---配置telnet
配置telnet 通过配置文件,我们可以设置telnet的连接时间.连接数.连接ip等,实现更加安全的连接 1.设置连接时间,参数“access_times” [root@localhost ...
- Linux基础命令---findfs
findfs 查找指定卷标或者UUID的文件系统对应的设备文件.findfs将搜索系统中的磁盘,寻找具有标签匹配标签或与UUID相等的文件系统.如果找到文件系统,文件系统的设备名称将打印在stdout ...
- python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码
python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码 python的json.dumps方法默认会输出成这种格式"\u535a\u ...
- php 获取随机数的几个方式
php 获取随机数的几个方式 1.直接获取从min-max的数,例如1-20:$randnum = mt_rand(1, 20); 2.在一个数组里面随机选择一个(验证码的时候需要字母.数字混合的情况 ...
- MySQL Crash Course #13# Chapter 21. Creating and Manipulating Tables
之前 manipulate 表里的数据,现在则是 manipulate 表本身. INDEX 创建多列构成的主键 自动增长的规定 查看上一次插入的自增 id 尽量用默认值替代 NULL 外键不可以跨引 ...
- Intel RDT
首先 spec, 从671页看起 https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.p ...
- Salty Fish 结对学习心得体会及创意照 (20165211 20165208)
小组结对学习心得体会及创意照 在阅读了软件工程讲义 3 两人合作(2) 要会做汉堡包和现代软件工程讲义 3 结对编程和两人合作后,加之对于这几周组队学习的感悟,我们对于组队学习的一些感悟和想法如下: ...
- windows下的 gvim - su'blime text 的使用
su'blime [s2'blaim] adj. n. 崇高的, 高尚的, 令人尊敬的; 壮丽的, 宏伟的; 出众的; 崇高的人, 壮丽的事物等等. a sublime mission. a subl ...
- ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm
ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Proce ...
- The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path 解决方法
项目忽然出现 The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Pat ...