Linear Algebra lecture9 note
Linear independence
Spanning a space
Basis and dimension
以上概念都是针对a bunch of vectors, 不是矩阵里的概念
Suppose A is m by n with m<n, then there are non-zero solutions to AX=0(more unknowns than equations)
Reason: There will be free variables
Independence:
Vectors X1, X2,…,Xn are independent if no combination gives zero vector( except the zero combination)
C1X1+C2X2+…+CnXn≠0
1.若以上向量中存在零向量,则不可能线性无关
2.平面内三个向量定成线性相关
3.如果零空间存在非零向量,那么各列线性相关
Repeat: when V1,V2,…,Vn are columns of A,
they are independent if N(A) is only zero vectors( no free variable,r=n)
they are dependent if AC=0 for some non-zero C( has free variable,r<n)
Spanning a space: Vectors V1,V2,..,Vl span a subspace means: The space consists of all combinations of those vectors
Basis: For a space is a sequence of vectors V1,V2,…,Vd with 2 properties:
1.They are independent
2.They span the spaces
Example:
space in R3
one space is

如何检验是否构成基?
可当作矩阵列向量,经过消元、变换,看是否能得到自由变量?是否列都是主列?
Rn,n vectors give basis if the n *n matrix with those columns if invertible
Given a space: Every basis for space has the same number of vectors, and this number is called dimension of space
Summary:
Independence, that looks at combinations not being zero
(线性无关,着眼于线性组合不为0)
Spanning, that looks at all the combinations
(生成,着眼于所有的线性组合)
Basis, that’s the one that combines independence and spanning
(基,一组无关的向量并生成空间)
Dimension,the number of vectors in any basis
(维数,表示基向量的个数)
Linear Algebra lecture9 note的更多相关文章
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- Linear Algebra lecture10 note
Four fundamental subspaces( for matrix A) if A is m by n matrix: Column space C(A) in Rm (列空间在m维实 ...
- Linear Algebra lecture8 note
Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique example: 若想方程有解 ...
- Linear Algebra lecture7 note
Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R rank o ...
- Linear Algebra lecture6 note
Vector spaces and subspaces Column space of A solving Ax=b Null space of A Vector space requiremen ...
- Linear Algebra Lecture5 note
Section 2.7 PA=LU and Section 3.1 Vector Spaces and Subspaces Transpose(转置) example: 特殊情况,对称 ...
- Linear Algebra lecture4 note
Inverse of AB,A^(A的转置) Product of elimination matrices A=LU (no row exchanges) Inverse of AB,A^(A ...
- Linear Algebra lecture3 note
Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A Matrix multiplication ...
- Codeforces Gym101502 B.Linear Algebra Test-STL(map)
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input ...
随机推荐
- 0-1背包问题python解决
def f(i,j): while i>=0: if i==0 and j>=l[i][0]: return l[i][1] elif i==0 and j<l[i][0]: ret ...
- Javascript跨域
跨域:只要协议.域名或端口有任何一个不同,就定义为跨域. CORS(Cross-Origin Resource Sharing):即跨域资源共享.定义了在访问跨域资源时,浏览器和服务器该如何沟通.CO ...
- AngularJs的UI组件ui-Bootstrap分享(十四)——Carousel
Carousel指令是用于图片轮播的控件,引入ngTouch模块后可以在移动端使用滑动的方式使用轮播控件. <!DOCTYPE html> <html ng-app="ui ...
- 数据库DDL语句书写规范
数据库DDL语句书写规范 1.SQL语句编写说明编写SQL语句应遵循统一的规范,包括大小写.空格.换行.缩进等等,只有完全一样的SQL才能在数据库中共享,从而减少硬解析. 字段类型.长度:根据数据情况 ...
- TypeScript Handbook 2——接口1(翻译)
接口(Interfaces) One of TypeScript's core principles is that type-checking focuses on the 'shape' that ...
- js③
while(true){ console.log('hello'); }/每次执行完语句块之后,又会跳回去检查小括号里面的布尔值,如果为true,那么又会执行语句块一次. //while循环//var ...
- [软件架构]模块化编程思想及(C++)实践
Repost 内容简介: 模块化思想 模块的构成 模块的管理 模块化实践 定义模块结构 声明模块对象 定义模块列表 模块列表对象 模块化思想 1. 将系统分成很多的模块,模块内部关注自身需要实 ...
- MMU内存管理单元相关知识点总结
1.MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件 ...
- CxImage图像库的使用 .
http://blog.csdn.net/wangjie0377/article/details/7830405 CxImage图像库 CxImage下载地址:http://www.codeproje ...
- VS2010+PCL配置
原文出自(转载): http://blog.csdn.net/renshengrumenglibing/article/details/9073675 1.安装 pcl 的完全安装包可以到: http ...