Linear Algebra lecture9 note
Linear independence
Spanning a space
Basis and dimension
以上概念都是针对a bunch of vectors, 不是矩阵里的概念
Suppose A is m by n with m<n, then there are non-zero solutions to AX=0(more unknowns than equations)
Reason: There will be free variables
Independence:
Vectors X1, X2,…,Xn are independent if no combination gives zero vector( except the zero combination)
C1X1+C2X2+…+CnXn≠0
1.若以上向量中存在零向量,则不可能线性无关
2.平面内三个向量定成线性相关
3.如果零空间存在非零向量,那么各列线性相关
Repeat: when V1,V2,…,Vn are columns of A,
they are independent if N(A) is only zero vectors( no free variable,r=n)
they are dependent if AC=0 for some non-zero C( has free variable,r<n)
Spanning a space: Vectors V1,V2,..,Vl span a subspace means: The space consists of all combinations of those vectors
Basis: For a space is a sequence of vectors V1,V2,…,Vd with 2 properties:
1.They are independent
2.They span the spaces
Example:
space in R3
one space is

如何检验是否构成基?
可当作矩阵列向量,经过消元、变换,看是否能得到自由变量?是否列都是主列?
Rn,n vectors give basis if the n *n matrix with those columns if invertible
Given a space: Every basis for space has the same number of vectors, and this number is called dimension of space
Summary:
Independence, that looks at combinations not being zero
(线性无关,着眼于线性组合不为0)
Spanning, that looks at all the combinations
(生成,着眼于所有的线性组合)
Basis, that’s the one that combines independence and spanning
(基,一组无关的向量并生成空间)
Dimension,the number of vectors in any basis
(维数,表示基向量的个数)
Linear Algebra lecture9 note的更多相关文章
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- Linear Algebra lecture10 note
Four fundamental subspaces( for matrix A) if A is m by n matrix: Column space C(A) in Rm (列空间在m维实 ...
- Linear Algebra lecture8 note
Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique example: 若想方程有解 ...
- Linear Algebra lecture7 note
Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R rank o ...
- Linear Algebra lecture6 note
Vector spaces and subspaces Column space of A solving Ax=b Null space of A Vector space requiremen ...
- Linear Algebra Lecture5 note
Section 2.7 PA=LU and Section 3.1 Vector Spaces and Subspaces Transpose(转置) example: 特殊情况,对称 ...
- Linear Algebra lecture4 note
Inverse of AB,A^(A的转置) Product of elimination matrices A=LU (no row exchanges) Inverse of AB,A^(A ...
- Linear Algebra lecture3 note
Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A Matrix multiplication ...
- Codeforces Gym101502 B.Linear Algebra Test-STL(map)
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input ...
随机推荐
- Informatica相同环境与不同环境的导入导出( Repository Name,Integration Service Name,Folder Name是否相同):
Informatica相同环境与不同环境的导入导出( Repository Name,Integration Service Name,Folder Name是否相同): 1.repository N ...
- java 抓取网页图片
import java.io.File; import java.io.FileOutputStream; import java.io.InputStream; import java.io.Out ...
- sqlserver 2008 孤立用户解决方法
从别一台服务器上得到一个数据库备份.还原到本地,数据库中的用户无法登录,也就是联机帮助中说的还原备份可能产生的孤立用户问题. 一.新建一个 MyDataBase 数据库 二.把备份文件放到 C 盘根目 ...
- VMware下利用ubuntu13.04建立嵌入式开发环境之四
二.telnet.SSH服务器安装与配置 1.telnet 1.1 安装服务器:apt-get install xinetd telnetd 1.2 安装openbsd-inetd:apt-get i ...
- 2014年6月份第4周51Aspx源码发布详情
通用医院会员管理系统源码 2014-6-23 [VS2010]功能介绍:本系统共包括以下模块:会员开卡管理.会员充值管理.会员消费管理.会员病例管理.客户预约管理.系统信息管理(门诊管理.卡类型管理 ...
- Spring3.0 与 MyBatis框架 整合小实例
本文将在Eclipse开发环境下,采用Spring MVC + Spring + MyBatis + Maven + Log4J 框架搭建一个Java web 项目. 1. 环境准备: 1.1 创建数 ...
- Python学习路程CMDB
本节内容 浅谈ITIL CMDB介绍 Django自定义用户认证 Restful 规范 资产管理功能开发 浅谈ITIL TIL即IT基础架构库(Information Technology Infra ...
- java反射机制深入详解
java反射机制深入详解 转自:http://www.cnblogs.com/hxsyl/archive/2013/03/23/2977593.html 一.概念 反射就是把Java的各种成分映射成 ...
- ant打包webservice jar
<project name="helloworldservice" basedir="." default="deploy"> ...
- ACM_1001_Exponentiation 详解
参考:http://blog.csdn.net/rually/article/details/8585268 #include<iostream> using namespace std; ...