Linear Algebra lecture9 note
Linear independence
Spanning a space
Basis and dimension
以上概念都是针对a bunch of vectors, 不是矩阵里的概念
Suppose A is m by n with m<n, then there are non-zero solutions to AX=0(more unknowns than equations)
Reason: There will be free variables
Independence:
Vectors X1, X2,…,Xn are independent if no combination gives zero vector( except the zero combination)
C1X1+C2X2+…+CnXn≠0
1.若以上向量中存在零向量,则不可能线性无关
2.平面内三个向量定成线性相关
3.如果零空间存在非零向量,那么各列线性相关
Repeat: when V1,V2,…,Vn are columns of A,
they are independent if N(A) is only zero vectors( no free variable,r=n)
they are dependent if AC=0 for some non-zero C( has free variable,r<n)
Spanning a space: Vectors V1,V2,..,Vl span a subspace means: The space consists of all combinations of those vectors
Basis: For a space is a sequence of vectors V1,V2,…,Vd with 2 properties:
1.They are independent
2.They span the spaces
Example:
space in R3
one space is
如何检验是否构成基?
可当作矩阵列向量,经过消元、变换,看是否能得到自由变量?是否列都是主列?
Rn,n vectors give basis if the n *n matrix with those columns if invertible
Given a space: Every basis for space has the same number of vectors, and this number is called dimension of space
Summary:
Independence, that looks at combinations not being zero
(线性无关,着眼于线性组合不为0)
Spanning, that looks at all the combinations
(生成,着眼于所有的线性组合)
Basis, that’s the one that combines independence and spanning
(基,一组无关的向量并生成空间)
Dimension,the number of vectors in any basis
(维数,表示基向量的个数)
Linear Algebra lecture9 note的更多相关文章
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- Linear Algebra lecture10 note
Four fundamental subspaces( for matrix A) if A is m by n matrix: Column space C(A) in Rm (列空间在m维实 ...
- Linear Algebra lecture8 note
Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique example: 若想方程有解 ...
- Linear Algebra lecture7 note
Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R rank o ...
- Linear Algebra lecture6 note
Vector spaces and subspaces Column space of A solving Ax=b Null space of A Vector space requiremen ...
- Linear Algebra Lecture5 note
Section 2.7 PA=LU and Section 3.1 Vector Spaces and Subspaces Transpose(转置) example: 特殊情况,对称 ...
- Linear Algebra lecture4 note
Inverse of AB,A^(A的转置) Product of elimination matrices A=LU (no row exchanges) Inverse of AB,A^(A ...
- Linear Algebra lecture3 note
Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A Matrix multiplication ...
- Codeforces Gym101502 B.Linear Algebra Test-STL(map)
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input ...
随机推荐
- VMware下利用ubuntu13.04建立嵌入式开发环境之二
之前在VMware中安装完Ubuntu系统,接下来开始设置开发中用到的服务和工具,以及系统设计. 1.安装VMware工具:打开VMware软件,在菜单->VM->Install VMwa ...
- java第一天学习作业及答案
作业一 一.选择题 1.选出在java中有效的注释声明(AD)(选两项) A.//这是注释 B.*/这是注释*/ C./这是注释 D./*这是注释*/ 2.在控制台运行一个java程序,使用的命名正确 ...
- C# 里的if/switch
今天又重新翻了翻C# Step by Step if 语句 if(bool 表达式) { 语句块: } else { 语句块: } switch(day) { case 0: dayName=&quo ...
- 计算机开放电子书汇总(包括二十多本python相关的图书教程)
计算机开放电子书汇总(包括二十多本python相关的图书教程) https://github.com/it-ebooks/it-ebooks-archive 这个汇总包含了各种计算机相关的开放图书和文 ...
- c#缓存介绍(转)
缓存主要是为了提高数据的读取速度.因为服务器和应用客户端之间存在着流量的瓶颈,所以读取大容量数据时,使用缓存来直接为客户端服务,可以减少客户端与服务器端的数据交互,从而大大提高程序的性能. 本章从缓存 ...
- mysql 大小写问题-sql-mode问题
一.mysql 字段名 表名 数据库名 是否区分大小写 今天碰到数据库大小写问题,linux与windows下问题 同时又碰到保留字 http://www.cnblogs.com/lawdong/ar ...
- 简单阐述下OC中UIImage三种创建方式~~~
一. 直接使用imageNamed进行创建 UIImage * image = [UIImage imageNamed:@"1.jpg"]; 简单说一下这种方式的优缺点: 优点:代 ...
- VS2010的项目配置
一直对VS的项目配置都是不怎么了解的,以前用过点,半年不用后,什么都忘记了... 下面这个是免于输入过长的引用头文件的,比如:#include “D:/C++/curl-7.37.0/libcurl/ ...
- 2016-7-15(1)使用gulp构建一个项目
gulp是前端开发过程中自动构建项目的工具,相同作用的还有grunt.构建工具依 靠插件能够自动监测文件变化以及完成js/sass/less/html/image/css/coffee等文件的语法检查 ...
- 10大白帽黑客专用的 Linux 操作系统
原文出处: Irshad Pathoor 译文出处:Linux中国 欢迎分享原创到伯乐头条 今天让我们来介绍十个黑客专用的操作系统,它们被白帽黑客用作渗透测试的工具.这里我把 Kali Lin ...