Linear Algebra lecture9 note
Linear independence
Spanning a space
Basis and dimension
以上概念都是针对a bunch of vectors, 不是矩阵里的概念
Suppose A is m by n with m<n, then there are non-zero solutions to AX=0(more unknowns than equations)
Reason: There will be free variables
Independence:
Vectors X1, X2,…,Xn are independent if no combination gives zero vector( except the zero combination)
C1X1+C2X2+…+CnXn≠0
1.若以上向量中存在零向量,则不可能线性无关
2.平面内三个向量定成线性相关
3.如果零空间存在非零向量,那么各列线性相关
Repeat: when V1,V2,…,Vn are columns of A,
they are independent if N(A) is only zero vectors( no free variable,r=n)
they are dependent if AC=0 for some non-zero C( has free variable,r<n)
Spanning a space: Vectors V1,V2,..,Vl span a subspace means: The space consists of all combinations of those vectors
Basis: For a space is a sequence of vectors V1,V2,…,Vd with 2 properties:
1.They are independent
2.They span the spaces
Example:
space in R3
one space is

如何检验是否构成基?
可当作矩阵列向量,经过消元、变换,看是否能得到自由变量?是否列都是主列?
Rn,n vectors give basis if the n *n matrix with those columns if invertible
Given a space: Every basis for space has the same number of vectors, and this number is called dimension of space
Summary:
Independence, that looks at combinations not being zero
(线性无关,着眼于线性组合不为0)
Spanning, that looks at all the combinations
(生成,着眼于所有的线性组合)
Basis, that’s the one that combines independence and spanning
(基,一组无关的向量并生成空间)
Dimension,the number of vectors in any basis
(维数,表示基向量的个数)
Linear Algebra lecture9 note的更多相关文章
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- Linear Algebra lecture10 note
Four fundamental subspaces( for matrix A) if A is m by n matrix: Column space C(A) in Rm (列空间在m维实 ...
- Linear Algebra lecture8 note
Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique example: 若想方程有解 ...
- Linear Algebra lecture7 note
Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R rank o ...
- Linear Algebra lecture6 note
Vector spaces and subspaces Column space of A solving Ax=b Null space of A Vector space requiremen ...
- Linear Algebra Lecture5 note
Section 2.7 PA=LU and Section 3.1 Vector Spaces and Subspaces Transpose(转置) example: 特殊情况,对称 ...
- Linear Algebra lecture4 note
Inverse of AB,A^(A的转置) Product of elimination matrices A=LU (no row exchanges) Inverse of AB,A^(A ...
- Linear Algebra lecture3 note
Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A Matrix multiplication ...
- Codeforces Gym101502 B.Linear Algebra Test-STL(map)
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input ...
随机推荐
- EF快速开发定义数据接口类(转)
using System; using System.Linq; using System.Linq.Expressions; using System.Data.Objects; namespace ...
- DateTimePicker如何与Delphi自带Style同步
Delphi 的 DateTimePicker 组件有一个CalColors属性,可以设置 DropDown 打开的日历节目的风格.但如果不使用 Delphi 自带的 Style,在这里设置属性看不到 ...
- ThinkPHP(3)SQL查询语句
ThinkPHP中对查询语句,包含了基本的查询方式.表达方式.快速查询.区间查询.组合查询.SQL查询.动态查询和子查询. 一.查询方式 ThinkPHP提供了三种基本的查询方式:字符串条件查询.索引 ...
- Java数组和C++异同
一.定义和初始化 1.Jave定义和初始化: Java:两种方式 Type[] A; Type A[]; 定义时不能指定数组的长度 静态初始化: A = new Type[][Ele1,Ele2 ...
- BZOJ 1018 线段树维护图连通性
用8个bool维护即可分别为LURU,LURD,LDRU,LDRD,LULD,RURD,Side[1],Side[2]即可. Side表示这一块有没有接到右边.Merge一下就可以了.码农题,WA了一 ...
- Oil Deposits
Oil Deposits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- Unity3D教程:茄子童萌會
http://s.epb.idv.tw/han-shi-ku/unity Unity 0000 Unity3D學習之路 - C#學習筆記(一) 0001 Unity3D學習之路 - C#學習筆記(二) ...
- Data Big Bang
在过去的五十多年中,我们可以较为直观地看到IT行业正以蓬勃发展之势渗入到我们生活的方方面面.虽经历过几轮新兴和重叠的技术浪潮,但每一波浪潮都伴随着新兴技术的革新.IT供应商主导着互联网的走向,网络秩序 ...
- C# 调用cmd命令行路径中带空格问题
今天打包winform程序,程序中本身有一处需要调用cmd.exe,打包安装在C:\Program Files目录下,然后调用cmd的地方,就弹出了C:\Program不是内部或外部命令,也不是可运行 ...
- 禁用CMFCRibbonApplicationButton的单击和双击事件
为了禁用CMFCRibbonApplicationButton的单击和双击事件,我重载了CMFCRibbonApplicationButton如下: 1. MyRibbonApplicationBut ...