AVL树与红黑树(R-B树)的区别与联系
AVL树(http://baike.baidu.com/view/593144.htm?fr=aladdin),又称(严格)高度平衡的二叉搜索树。其他的平衡树还有:红黑树、Treap、伸展树、SBT。
注:使用 "nil 叶子"或"空(null)叶子",它不包含数据而只充当树在此结束的指示。这些节点在绘图中经常被省略,导致了这些树好象同上述原则相矛盾,而实际上不是这样。与此有关的结论是所有节点都有两个子节点,尽管其中的一个或两个可能是空叶子。
红黑树(http://baike.baidu.com/view/133754.htm?fr=aladdin),红黑树也是二叉查找树,统计性能要好于平衡二叉树。典型的用途是实现关联数组。因此,红黑树在很多地方都有应用。在C++ STL中,很多部分(目前包括set,multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持)。
红黑树的关键性质: 从根到叶子的最长的可能路径不多于(<=)最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。
注:最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。
红黑树与AVL树的比较:
AVL是严格的平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多;
红黑树是用非严格的平衡来换取增删节点时候旋转次数的降低开销;
所以简单说,如果你的应用中,搜索的次数远远大于插入和删除,那么选择AVL树,
如果搜索,插入删除次数几乎差不多,应选择红黑树。即,有时仅为了排序(建立-遍历-删除),不查找或查找次数很少,R-B树合算一些。
红黑树与AVL树的调整平衡的实现机制不同,AVL靠平衡因子和旋转,红黑树靠节点颜色以及一些约定再加上旋转。因此,存在去掉颜色的红黑树后它不是AVL树,比如左子树都是黑的,右子树都是红黑相间的,这样整个树高度2n的时候,根节点的左右层数差可以到n。
红黑树能够以O(log2 n) 的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。当然,还有一些更好的,但实现起来更复杂的数据结构 能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较“便宜”的解决方案。红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高。当然,红黑树并不适应所有应用树的领域。如果数据基本上是静态的,那么让他们待在他们能够插入,并且不影响平衡的地方会具有更好的性能。如果数据完全是静态的,例如,做一个哈希表,性能可能会更好一些。红黑树是牺牲了严格的高度平衡的优越条件为 代价红黑树能够以O(log2 n)的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。当然,还有一些更好的,但实现起来更复杂的数据结构 能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较“便宜”的解决方案。红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高.
AVL树在顺序插入和删除时有20%左右的性能优势,但随机性能反而落后15%左右,现实应用当然一般都是随机情况,所以红黑树得到了更广泛的应用。
AVL树与红黑树(R-B树)的区别与联系的更多相关文章
- AVL树,红黑树,B-B+树,Trie树原理和应用
前言:本文章来源于我在知乎上回答的一个问题 AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中? 看完后您可能会了解到这些数据结构大致的原理及为什么用在这些场景,文章并不涉及具体操作 ...
- B树,B+树,红黑树应用场景AVL树,红黑树,B树,B+树,Trie树
B B+运用在file system database这类持续存储结构,同样能保持lon(n)的插入与查询,也需要额外的平衡调节.像mysql的数据库定义是可以指定B+ 索引还是hash索引. C++ ...
- AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中?
AVL树: 最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间的管理用到了AVL树. 红黑树: 平衡二叉树,广泛用在C++的STL中.如map和set都是用红黑树实现的. ...
- AVL树、红黑树以及B树介绍
简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与 ...
- 各种查找算法的选用分析(顺序查找、二分查找、二叉平衡树、B树、红黑树、B+树)
目录 顺序查找 二分查找 二叉平衡树 B树 红黑树 B+树 参考文档 顺序查找 给你一组数,最自然的效率最低的查找算法是顺序查找--从头到尾挨个挨个遍历查找,它的时间复杂度为O(n). 二分查找 而另 ...
- 单例模式,堆,BST,AVL树,红黑树
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton () ...
- 二叉树,AVL树和红黑树
为了接下来能更好的学习TreeMap和TreeSet,讲解一下二叉树,AVL树和红黑树. 1. 二叉查找树 2. AVL树 2.1. 树旋转 2.1.1. 左旋和右旋 2.1.2. 左左,右右,左右, ...
- 对于AVL树和红黑树的理解
AVL又称(严格)高度平衡的二叉搜索树,也叫二叉查找树.平衡二叉树.window对进程地址空间的管理用到了AVL树. 红黑树是非严格平衡二叉树,统计性能要好于平衡二叉树.广泛的在C++的STL中,ma ...
- 论AVL树与红黑树
首先讲解一下AVL树: 例如,我们要输入这样一串数字,10,9,8,7,15,20这样一串数字来建立AVL树 1,首先输入10,得到一个根结点10 2,然后输入9, 得到10这个根结点一个左孩子结点9 ...
随机推荐
- 01.hadoop集群环境搭建
hadoop集群搭建的步骤 1.安装jdk2修改ip地址3.关闭防火墙4.修改hostname5.设置ssh自动登陆6.安装hadoop-------------------------------- ...
- sql server 2014登录账号
NT Service\MSSQL$MSSQLSERVER2014NT Service\MSSQLSERVER 尝试打开或创建物理文件 'E:\aaa.mdf' 时,CREATE FILE 遇到操作系统 ...
- 机器学习进阶-案例实战-图像全景拼接-书籍SIFT特征点连接 1.cv2.drawMatches(对两个图像的关键点进行连线操作)
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2) # 对两个图像关键点进行连线操作 参数说明:im ...
- Linux Centos6.5 SVN服务器搭建 以及客户端安装
转载:http://www.cnblogs.com/mymelon/p/5483215.html /******开始*********/ 系统环境:Centos 6.5 第一步:通过yum命令安装sv ...
- js页面停留时间
//在线阅读时间 function onlineRead(minutes){ var o= new Object(); o.courseId=courseId; o.userId=userId; o. ...
- redis 哨兵模式 Connection refused
spring整合redis哨兵,修改了bind ,protected 任然连接拒绝,是因为哨兵的mastername 和spring里面的名称不一致..导致拒绝了...... 哨兵模式配置文件 属性 ...
- TCP/IP协议分层详解
TCP/IP 和 ISO/OSI ISO/OSI模型,即开放式通信系统互联参考模型(Open System Interconnection Reference Model),是国际标准化组织(ISO) ...
- 运行vue项目--安装vue脚手架vue cli
第一步. 安装node: 官网下载node的.pkg,下载地址,选择相应版本进行下载 mac终端下输入npm -v 和 node -v, 出现相应版本号即安装成功. 若均提示 command not ...
- MySQL中tinytext、text、mediumtext和longtext详解【转】
一.数字类型 类型 范围 说明 Char(N) [binary] N=1~255 个字元binary :分辨大小写 固定长度 std_name cahr(32) not null VarChar( ...
- 7.final关键字.md
1.final类型变量 定义:被final修饰的变量,一旦被赋初值后,则final类型变量的值就不能再改变. 1.1成员变量 final修饰的成员变量必须显式的赋初值. 赋值的位置: •类变量:静态初 ...