【LOJ】#2536. 「CQOI2018」解锁屏幕
题解
什么破题,看一眼就能想出来\(n^2 2^n\)看了一眼数据范围有点虚,结果跑得飞快= =
处理出\(a[i][j]\)表示从\(i\)到\(j\)经过的点的点集
然后\(f[i][S]\)表示最后一个点在\(i\)处,经过的点集为\(S\),方案数是多少
然后枚举一个不在\(S\)中的点\(j\)看看\(a[i][j]\)是否全部被\(S\)包含即可
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int, int>
#define pdi pair<db, int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template <class T>
void read(T &res) {
res = 0;
char c = getchar();
T f = 1;
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template <class T>
void out(T x) {
if (x < 0) {
x = -x;
putchar('-');
}
if (x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 100000007;
int N, pos[(1 << 20) + 5];
int a[25][25];
int f[21][(1 << 20) + 5], cnt[(1 << 20) + 5];
struct Point {
int x, y;
Point(int _x = 0, int _y = 0) {
x = _x;
y = _y;
}
friend Point operator+(const Point &a, const Point &b) { return Point(a.x + b.x, a.y + b.y); }
friend Point operator-(const Point &a, const Point &b) { return Point(a.x - b.x, a.y - b.y); }
friend int operator*(const Point &a, const Point &b) { return a.x * b.y - a.y * b.x; }
friend int dot(const Point &a, const Point &b) { return a.x * b.x + a.y * b.y; }
int norm() { return x * x + y * y; }
} P[25];
int inc(int a, int b) { return a + b >= MOD ? a + b - MOD : a + b; }
int mul(int a, int b) { return 1LL * a * b % MOD; }
int lowbit(int x) { return x & (-x); }
void update(int &x, int y) { x = inc(x, y); }
void Solve() {
read(N);
for (int i = 1; i <= N; ++i) {
read(P[i].x);
read(P[i].y);
}
for (int i = 1; i <= N; ++i) {
for (int j = i + 1; j <= N; ++j) {
a[i][j] |= (1 << i - 1) | (1 << j - 1);
for (int k = 1; k <= N; ++k) {
if (k == i || k == j) continue;
if ((P[k] - P[i]) * (P[j] - P[i]) == 0 && dot(P[k] - P[i], P[j] - P[i]) >= 0 &&
(P[k] - P[i]).norm() < (P[j] - P[i]).norm()) {
a[i][j] |= (1 << k - 1);
}
}
a[j][i] = a[i][j];
}
}
for (int i = 0; i < N; ++i) pos[1 << i] = i + 1;
for (int i = 1; i <= N; ++i) {
f[i][1 << i - 1] = 1;
}
for (int S = 1; S < (1 << N); ++S) {
for (int T = S; T; T -= lowbit(T)) {
int h = pos[lowbit(T)];
if (!f[h][S]) continue;
for (int j = 1; j <= N; ++j) {
if ((S & (1 << j - 1)) == 0) {
if ((a[h][j] & (S | (1 << j - 1))) == a[h][j]) update(f[j][S ^ (1 << j - 1)], f[h][S]);
}
}
}
}
int ans = 0;
for (int S = 1; S < (1 << N); ++S) {
cnt[S] = cnt[S - lowbit(S)] + 1;
if (cnt[S] >= 4) {
for (int i = 1; i <= N; ++i) update(ans, f[i][S]);
}
}
out(ans);
enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in", "r", stdin);
#endif
Solve();
return 0;
}
【LOJ】#2536. 「CQOI2018」解锁屏幕的更多相关文章
- loj#2531. 「CQOI2018」破解 D-H 协议(BSGS)
题意 题目链接 Sol 搞个BSGS板子出题人也是很棒棒哦 #include<bits/stdc++.h> #define Pair pair<int, int> #defin ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- 【题解】Luogu P2047 社交网络总结 (Floyd算法,最短路计数)
题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对 ...
- 【BZOJ4391】[Usaco2015 dec]High Card Low Card(贪心)
[BZOJ4391][Usaco2015 dec]High Card Low Card(贪心) 题面 BZOJ 题解 预处理前缀后缀的结果,中间找个地方合并就好了. #include<iostr ...
- SQL Server 执行计划的理解
要理解执行计划,怎么也得先理解,那各种各样的名词吧.鉴于自己还不是很了解.本文打算作为只写懂的,不懂的懂了才写. 在开头要先说明,第一次看执行计划要注意,SQL Server的执行计划是从右向左看的. ...
- virtualbox 迁移虚拟机存储位置
1. 菜单--管理--全局设定 ,更改 默认虚拟电脑位置. 2. 复制 (移动)现有虚拟机目录到新位置,软件里删除现有虚拟机 3. 菜单--控制--注册,逐个选择虚拟机目录里的 .vbox文件,导进虚 ...
- unity常用小知识点
感觉自己抑郁变得更严重了,超级敏感,经常想崩溃大哭,睡眠超差,实在不想药物治疗,多看看书,多约约朋友,多出去走走. 来几句鸡汤吧,人一定要活得明白一点,任何关系都不要不清不楚,说不定最后受伤的就是自个 ...
- Apache 与 Tomcat 整合
目标 1.同一台机器上,不同的域名指向,访问不同的项目,即: (1)one.test.com 访问 project_one (2) two.test.com 访问 project_two 2.将T ...
- 【Linux】MySQL安装及允许远程访问
安装环境/工具 Linux( centOS 版) MySQL(MySQL-5.6.28-1.el7.x86_64.rpm-bundle.tar版) 安装步骤 1.解压mysql安装文件 命令:tar ...
- bzoj千题计划283:bzoj4516: [Sdoi2016]生成魔咒(后缀数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=4516 考虑在后面新加一个字母产生的影响 假设是第i个 如果不考虑重复,那么会增加i个不同的字符串 考 ...
- 何凯文每日一句打卡||DAY5
- JavaScript的单线程性质以及定时器的工作原理
前些日子还在网上争论过js动画用setTimeout还是setInterval,个人偏向于setTimeout,当动画中牵扯到ajax时用setInterval会有时间偏差,出现一些问题即使用clea ...