TensorBoard 简介及使用流程【转】
转自:https://blog.csdn.net/gsww404/article/details/78605784
仅供学习参考,转载地址:http://blog.csdn.net/mzpmzk/article/details/77914941
一、TensorBoard 简介及使用流程
1、TensoBoard 简介
TensorBoard 和 TensorFLow 程序跑在不同的进程中,TensorBoard 会自动读取最新的 TensorFlow 日志文件,并呈现当前 TensorFLow 程序运行的最新状态。
2、TensorBoard 使用流程
- 添加记录节点:
tf.summary.scalar/image/histogram()
等- 汇总记录节点:
merged = tf.summary.merge_all()
- 运行汇总节点:
summary = sess.run(merged)
,得到汇总结果- 日志书写器实例化:
summary_writer = tf.summary.FileWriter(logdir, graph=sess.graph)
,实例化的同时传入 graph 将当前计算图写入日志- 调用日志书写器实例对象
summary_writer
的add_summary(summary, global_step=i)
方法将所有汇总日志写入文件- 调用日志书写器实例对象
summary_writer
的close()
方法写入内存,否则它每隔120s写入一次
二、TensorFlow 可视化分类
1、计算图的可视化:add_graph()
...create a graph...
# Launch the graph in a session.
sess = tf.Session()
# Create a summary writer, add the 'graph' to the event file.
writer = tf.summary.FileWriter(logdir, sess.graph)
writer.close() # 关闭时写入内存,否则它每隔120s写入一次
- 1
- 2
- 3
- 4
- 5
- 6
2、监控指标的可视化:add_summary()
I、SCALAR
tf.summary.scalar(name, tensor, collections=None, family=None)
可视化训练过程中随着迭代次数准确率(val acc)、损失值(train/test loss)、学习率(learning rate)、每一层的权重和偏置的统计量(mean、std、max/min)等的变化曲线
输入参数:
- name:此操作节点的名字,TensorBoard 中绘制的图形的纵轴也将使用此名字
- tensor: 需要监控的变量 A real numeric Tensor containing a single value.
输出:
- A scalar Tensor of type string. Which contains a Summary protobuf.
II、IMAGE
tf.summary.image(name, tensor, max_outputs=3, collections=None, family=None)
可视化
当前轮
训练使用的训练/测试图片或者 feature maps输入参数:
- name:此操作节点的名字,TensorBoard 中绘制的图形的纵轴也将使用此名字
- tensor: A r A 4-D uint8 or float32 Tensor of shape
[batch_size, height, width, channels]
where channels is 1, 3, or 4- max_outputs:Max number of batch elements to generate images for
输出:
- A scalar Tensor of type string. Which contains a Summary protobuf.
III、HISTOGRAM
tf.summary.histogram(name, values, collections=None, family=None)
可视化张量的取值分布
输入参数:
- name:此操作节点的名字,TensorBoard 中绘制的图形的纵轴也将使用此名字
- tensor: A real numeric Tensor. Any shape. Values to use to build the histogram
输出:
- A scalar Tensor of type string. Which contains a Summary protobuf.
IV、MERGE_ALL
tf.summary.merge_all(key=tf.GraphKeys.SUMMARIES)
- Merges all summaries collected in the default graph
- 因为程序中定义的写日志操作比较多,一一调用非常麻烦,所以TensoorFlow 提供了此函数来整理所有的日志生成操作,eg:
merged = tf.summary.merge_all ()
- 此操作不会立即执行,所以,需要明确的运行这个操作(
summary = sess.run(merged)
)来得到汇总结果- 最后调用日志书写器实例对象的
add_summary(summary, global_step=i)
方法将所有汇总日志写入文件
3、多个事件(event)的可视化:add_event()
- 如果 logdir 目录的子目录中包含另一次运行时的数据(多个 event),那么 TensorBoard 会展示所有运行的数据(主要是scalar),这样可以用于比较不同参数下模型的效果,调节模型的参数,让其达到最好的效果!
- 上面那条线是迭代200次的loss曲线图,下面那条是迭代400次的曲线图,程序见最后。
三、通过命名空间美化计算图
- 使用命名空间使可视化效果图更有层次性,使得神经网络的整体结构不会被过多的细节所淹没
- 同一个命名空间下的所有节点会被缩略成一个节点,只有顶层命名空间中的节点才会被显示在 TensorBoard 可视化效果图上
- 可通过
tf.name_scope()
或者tf.variable_scope()
来实现,具体见最后的程序。
四、将所有日志写入到文件:tf.summary.FileWriter()
tf.summary.FileWriter(logdir, graph=None, flush_secs=120, max_queue=10)
- 负责将事件日志(graph、scalar/image/histogram、event)写入到指定的文件中
初始化参数:
- logdir:事件写入的目录
- graph:如果在初始化的时候传入
sess,graph
的话,相当于调用add_graph()
方法,用于计算图的可视化- flush_sec:How often, in seconds, to flush the
added summaries and events
to disk.- max_queue:Maximum number of
summaries or events
pending to be written to disk before one of the ‘add’ calls block.其它常用方法:
add_event(event)
:Adds an event to the event fileadd_graph(graph, global_step=None)
:Adds a Graph to the event file,Most users pass a graph in the constructor insteadadd_summary(summary, global_step=None)
:Adds a Summary protocol buffer to the event file,一定注意要传入 global_stepclose()
:Flushes the event file to disk and close the fileflush()
:Flushes the event file to diskadd_meta_graph(meta_graph_def,global_step=None)
add_run_metadata(run_metadata, tag, global_step=None)
五、启动 TensorBoard 展示所有日志图表
1. 通过 Windows 下的 cmd 启动
- 运行你的程序,在指定目录下(
logs
)生成event
文件 - 在
logs
所在目录,按住shift
键,点击右键选择在此处打开cmd
- 在
cmd
中,输入以下命令启动tensorboard --logdir=logs
,注意:logs的目录并不需要加引号, logs 中有多个event 时,会生成scalar 的对比图,但 graph 只会展示最新的结果 - 把下面生成的网址(
http://DESKTOP-S2Q1MOS:6006 # 每个人的可能不一样
) copy 到浏览器中打开即可
2. 通过 Ubuntu下的 bash 启动
- 运行你的程序(
python my_program.py
),在指定目录下(logs
)生成event
文件 - 在
bash
中,输入以下命令启动tensorboard
,注意:logs的目录并不需要加引号,端口号必须是事先在路由器中配置好的
--logdir=logs --port=8888 - 把下面生成的网址(
http://ubuntu16:8888 # 把ubuntu16 换成服务器的外部ip地址即可
) copy 到本地浏览器中打开即可
六、使用 TF 实现一元线性回归(并使用 TensorBoard 可视化)
- 多个event的
loss
对比图以及网络结构图(graph
)已经在上面展示了,这里就不重复了。- 最下面展示了网络的训练过程以及最终拟合效果图
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 准备训练数据,假设其分布大致符合 y = 1.2x + 0.0
n_train_samples = 200
X_train = np.linspace(-5, 5, n_train_samples)
Y_train = 1.2*X_train + np.random.uniform(-1.0, 1.0, n_train_samples) # 加一点随机扰动
# 准备验证数据,用于验证模型的好坏
n_test_samples = 50
X_test = np.linspace(-5, 5, n_test_samples)
Y_test = 1.2*X_test
# 参数学习算法相关变量设置
learning_rate = 0.01
batch_size = 20
summary_dir = 'logs'
print('~~~~~~~~~~开始设计计算图~~~~~~~~')
# 使用 placeholder 将训练数据/验证数据送入网络进行训练/验证
# shape=None 表示形状由送入的张量的形状来确定
with tf.name_scope('Input'):
X = tf.placeholder(dtype=tf.float32, shape=None, name='X')
Y = tf.placeholder(dtype=tf.float32, shape=None, name='Y')
# 决策函数(参数初始化)
with tf.name_scope('Inference'):
W = tf.Variable(initial_value=tf.truncated_normal(shape=[1]), name='weight')
b = tf.Variable(initial_value=tf.truncated_normal(shape=[1]), name='bias')
Y_pred = tf.multiply(X, W) + b
# 损失函数(MSE)
with tf.name_scope('Loss'):
loss = tf.reduce_mean(tf.square(Y_pred - Y), name='loss')
tf.summary.scalar('loss', loss)
# 参数学习算法(Mini-batch SGD)
with tf.name_scope('Optimization'):
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# 初始化所有变量
init = tf.global_variables_initializer()
# 汇总记录节点
merge = tf.summary.merge_all()
# 开启会话,进行训练
with tf.Session() as sess:
sess.run(init)
summary_writer = tf.summary.FileWriter(logdir=summary_dir, graph=sess.graph)
for i in range(201):
j = np.random.randint(0, 10) # 总共200训练数据,分十份[0, 9]
X_batch = X_train[batch_size*j: batch_size*(j+1)]
Y_batch = Y_train[batch_size*j: batch_size*(j+1)]
_, summary, train_loss, W_pred, b_pred = sess.run([optimizer, merge, loss, W, b], feed_dict={X: X_batch, Y: Y_batch})
test_loss = sess.run(loss, feed_dict={X: X_test, Y: Y_test})
# 将所有日志写入文件
summary_writer.add_summary(summary, global_step=i)
print('step:{}, losses:{}, test_loss:{}, w_pred:{}, b_pred:{}'.format(i, train_loss, test_loss, W_pred[0], b_pred[0]))
if i == 200:
# plot the results
plt.plot(X_train, Y_train, 'bo', label='Train data')
plt.plot(X_test, Y_test, 'gx', label='Test data')
plt.plot(X_train, X_train * W_pred + b_pred, 'r', label='Predicted data')
plt.legend()
plt.show()
summary_writer.close()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
TensorBoard 简介及使用流程【转】的更多相关文章
- Android系统Recovery工作原理之使用update.zip升级过程分析(九)---updater-script脚本语法简介以及执行流程【转】
本文转载自:http://blog.csdn.net/mu0206mu/article/details/7465603 Android系统Recovery工作原理之使用update.zip ...
- 【转】 Android的NDK开发(1)————Android JNI简介与调用流程
原文网址:http://blog.csdn.net/conowen/article/details/7521340 ****************************************** ...
- Android系统Recovery工作原理之使用update.zip升级过程---updater-script脚本语法简介以及执行流程(转)
目前update-script脚本格式是edify,其与amend有何区别,暂不讨论,我们只分析其中主要的语法,以及脚本的流程控制. 一.update-script脚本语法简介: 我们顺着所生成的脚本 ...
- 信用评分卡(A卡/B卡/C卡)的模型简介及开发流程|干货
https://blog.csdn.net/varyall/article/details/81173326 如今在银行.消费金融公司等各种贷款业务机构,普遍使用信用评分,对客户实行打分制,以期对客户 ...
- Android的NDK开发(1)————Android JNI简介与调用流程
1.JNI简介 JNI全称为Java Native Interface(Java本地调用).从Java1.1开始,JNI成为java平台的一部分,它允许Java代码和其他语言写的代码(如C&C ...
- Spring 框架基础(06):Mvc架构模式简介,执行流程详解
本文源码:GitHub·点这里 || GitEE·点这里 一.SpringMvc框架简介 1.Mvc设计理念 MVC是一种软件设计典范,用一种业务逻辑.数据.界面显示分离的方法组织代码,将业务逻辑聚集 ...
- 【HTTP】一、HTTP协议简介及其工作流程
协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器. (一 ...
- SpringMVC的简介和工作流程
一.简介 Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring 框架提供了构建 Web 应用程序的全功能 MVC 模块.Spri ...
- Tensorboard简介
Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后在指定的web端可视化地展现这些信息 ...
随机推荐
- 第二次spring冲刺第2天
今天我们开了个小会,关于讨论开始页面的设计及数据输入的格式限制.运算功能等改善
- Window环境下RabbitMQ 添加用户、设置角色和权限
基本上新增用户.角色和权限的方法都一样,大概如下: REM 添加一个帐号 密码 rabbitmqctl.bat add_user zhangfujun zhangfujun123 REM 添加角色 r ...
- OneZero第四次站立会议(2016.3.24)
会议时间:2016年3月24日 15:30~15:47 会议成员:冉华,张敏,王巍,夏一鸣. 会议目的:汇报前一天工作,全体成员评论,确定会后修改内容. 会议内容:以下为会议插图 1.界面原型方面,在 ...
- wordApp.Documents.Open 未将对象引用实例
wordApp.Documents.Open (.........),当我打开的是.docx,能正常打开当是.doc时,却返回空置,显示失败,未能找到文件.......,但其实文件都在 解决方案 WO ...
- 【题解】 [HNOI2002]营业额统计 (Splay)
懒得复制,戳我戳我 Solution: \(Splay\)板子题,注意可以选择相等大小 Code: //It is coded by Ning_Mew on 4.10 #include<bits ...
- java JNative调用DLL中带引用类型的方法
DLL中的被调函数有两个参数,第二个参数是int64类型的引用类型,因此创建8byte的MemoryBlock: JNative n = null; try { n = new JNative( ...
- 【bzoj3196】 Tyvj1730—二逼平衡树
http://www.lydsy.com/JudgeOnline/problem.php?id=3196 (题目链接) 题意 1.查询k在区间内的排名:2.查询区间内排名为k的值:3.修改某一位值上的 ...
- POJ 1062 昂贵的聘礼(图论,最短路径)
POJ 1062 昂贵的聘礼(图论,最短路径) Description 年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女 ...
- c++并发编程之thread::join()和thread::detach()
thread::join(): 阻塞当前线程,直至 *this 所标识的线程完成其执行.*this 所标识的线程的完成同步于从 join() 的成功返回. 该方法简单暴力,主线程等待子进程期间什么都不 ...
- solr与mysql数据同步的方案
1.使用activeMQ http://blog.csdn.net/zhou2s_101216/article/details/77855413 2.通过配置实现定时同步 http://blog.cs ...