题意

题目链接

分析

  • 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案。
  • 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法的方案数。
  • 然后就和 BZOJ4766文艺计算姬 一致了,假设两边点集大小分别为 \(n,m\) ,生成树个数就是 \(n^{m-1}m^{n-1}\)
  • 证明可以考虑 prufer 序列还原树时的操作,将所有点先放入 set 中,每次将没有出现在序列中的编号最小的点拿出来和 prufer 序列开头的点连边,并将这两个元素对应删除直到 set 的大小为2。对于选择的点集相同,出现顺序不同的两个方案,一定会保证每个集合的点所占据的位置是一个固定的集合,证明如下:

假设我们得到了两个点集相同的 prufer 序列:

\(S_1\ S_2\ T_1\ T_2\ S_3\)
\(S_1\ S_2\ S_3\ T_2\ T_1\)

上述例子中的第三个位置,我们的 set 在前 3 个位置取出的点时相同的,\(T_1,S_3\) 不属于同一个点集,不可能都可以和 set 取出的第三个元素连边。

  • 所以答案就是 \(k^{n-k-1}(n-k)^{k-1}\binom{n-1}{k-1}\)

代码

代码链接

[LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]的更多相关文章

  1. LOJ#6044. 「雅礼集训 2017 Day8」共(Prufer序列)

    题面 传送门 题解 答案就是\(S(n-k,k)\times {n-1\choose k-1}\) 其中\(S(n,m)\)表示左边\(n\)个点,右边\(m\)个点的完全二分图的生成树个数,它的值为 ...

  2. LOJ #6044 -「雅礼集训 2017 Day8」共(矩阵树定理+手推行列式)

    题面传送门 一道代码让你觉得它是道给初学者做的题,然鹅我竟没想到? 首先考虑做一步转化,我们考虑将整棵树按深度奇偶性转化为一张二分图,即将深度为奇数的点视作二分图的左部,深度为偶数的点视作二分图的右部 ...

  3. loj #6046. 「雅礼集训 2017 Day8」爷

    #6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...

  4. LOJ#6046. 「雅礼集训 2017 Day8」爷(分块)

    题面 传送门 题解 转化为\(dfs\)序之后就变成一个区间加,区间查询\(k\)小值的问题了,这显然只能分块了 然而我们分块之后需要在块内排序,然后二分\(k\)小值并在块内二分小于它的元素--一个 ...

  5. LOJ#6045. 「雅礼集训 2017 Day8」价(最小割)

    题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\t ...

  6. 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价

    又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...

  7. loj#6033. 「雅礼集训 2017 Day2」棋盘游戏(二分图博弈)

    题意 链接 Sol 第一次做在二分图上博弈的题..感觉思路真是清奇.. 首先将图黑白染色. 对于某个点,若它一定在最大匹配上,那么Bob必胜.因为Bob可以一直沿着匹配边都,Alice只能走非匹配边. ...

  8. [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]

    题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...

  9. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

随机推荐

  1. Object对象常用方法总结

    [常用语法]//1.定义对象: var const let var Person = { name: '张三', birth,//等同于birth: birth hello() { console.l ...

  2. C# socket 发送图片和文件

    先说服务端:界面:如图: 界面设计源码 namespace SocketJPGToTxt { partial class Form1 { /// <summary> /// 必需的设计器变 ...

  3. 转:.NET基础篇——反射的奥妙

    反射是一个程序集发现及运行的过程,通过反射可以得到*.exe或*.dll等程序集内部的信息.使用反射可以看到一个程序集内部的接口.类.方法.字段.属性.特性等等信息.在System.Reflectio ...

  4. 转:jQuery选择器大全(48个代码片段+21幅图演示)

    选择器是jQuery最基础的东西,本文中列举的选择器基本上囊括了所有的jQuery选择器,也许各位通过这篇文章能够加深对jQuery选择器的理解,它们本身用法就非常简单,我更希望的是它能够提升个人编写 ...

  5. 【Alpha Go】Day 1 !

    [Alpha Go]Day 1 ! Part 0 · 简要目录 Part 1 · 任务分配 Part 2 · 他日安排 Part 3 · 预期任务量 Part 4 · 团队贡献值计算原则 Part 1 ...

  6. 阿里八八Alpha阶段Scrum(2/12)

    今日进度 叶文滔: 11.1:搭建Andriod Studio开发环境 11.2:已经完成Alpha阶段的APP整体框架搭建. 11.3:根据会议讨论内容,增加了模块标题栏返回键. 王国超: 完成了多 ...

  7. Nescafe #29 NOIP模拟赛

    Nescafe #29 NOIP模拟赛 不知道这种题发出来算不算侵权...毕竟有的题在$bz$上是权限题,但是在$vijos$似乎又有原题...如果这算是侵权的话请联系我,我会尽快删除,谢谢~ 今天开 ...

  8. Atcoder 水题选做

    为什么是水题选做呢?因为我只会水题啊 ( 为什么是$Atcoder$呢?因为暑假学长来讲课的时候讲了三件事:不要用洛谷,不要用dev-c++,不要用单步调试.$bzoj$太难了,$Topcoder$整 ...

  9. PHP生成excel表格文件并下载

    本文引自网络,仅供自己学习之用. 利用php导出excel我们大多会直接生成.xls文件,这种方便快捷. function createtable($list,$filename){ header(& ...

  10. 关于JRebel启动tomcat访问上次工程的index.jsp

    检查了一下,原来我把上次配置文件包括JRebel配置文件一起复制过来,用JRebel启动时tomcat访问JRebel配置文件的目录下 这个是我上次文件的路径,把JRebel配置文件删除了,然后 di ...