import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
%matplotlib inline
import matplotlib.pyplot as plt mnist = input_data.read_data_sets('MNIST_data', one_hot=True) class ConvModel(object):
def __init__(self, lr, batch_size, iter_num):
self.lr = lr
self.batch_size = batch_size
self.iter_num = iter_num self.X_flat = tf.placeholder(tf.float32, [None, 784])
self.X = tf.reshape(self.X_flat, [-1, 28, 28, 1]) # 本次要用卷积进行运算,所以使用2维矩阵。从这个角度讲,利用了更多的位置信息。
self.y = tf.placeholder(tf.float32, [None, 10])
self.dropRate = tf.placeholder(tf.float32) conv1 = tf.layers.conv2d(self.X, 32, 5, padding='same', activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1))
conv1 = tf.layers.max_pooling2d(conv1 , 2,2)
conv2 = tf.layers.conv2d(conv1, 64, 5, padding='same', activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1))
pool1 = tf.layers.max_pooling2d(conv2, 2,2)
flatten = tf.reshape(pool1 , [-1, 7*7*64])
dense1 = tf.layers.dense(flatten, 1024, activation=tf.nn.relu, use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1))
dense1_ = tf.nn.dropout(dense1, self.dropRate)
dense2 = tf.layers.dense(dense1_, 10, activation=tf.nn.relu, use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1)) self.loss = tf.losses.softmax_cross_entropy(onehot_labels=self.y, logits=dense2)
self.train_step = tf.train.AdamOptimizer(1e-4).minimize(self.loss ) # 用于模型训练
self.correct_prediction = tf.equal(tf.argmax(self.y, axis=1), tf.argmax(dense2, axis=1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
# 用于保存训练好的模型
self.saver = tf.train.Saver()
def train(self):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 先初始化所有变量。
for i in range(self.iter_num):
batch_x, batch_y = mnist.train.next_batch(self.batch_size) # 读取一批数据
loss, _= sess.run([self.loss, self.train_step],
feed_dict={self.X_flat: batch_x, self.y: batch_y, self.dropRate: 0.5}) # 每调用一次sess.run,就像拧开水管一样,所有self.loss和self.train_step涉及到的运算都会被调用一次。
if i%1000 == 0:
train_accuracy = sess.run(self.accuracy, feed_dict={self.X_flat: batch_x, self.y: batch_y, self.dropRate: 1.}) # 把训练集数据装填进去
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.X_flat: test_x, self.y: test_y, self.dropRate: 1.}) # 把测试集数据装填进去
print ('iter\t%i\tloss\t%f\ttrain_accuracy\t%f\ttest_accuracy\t%f' % (i,loss,train_accuracy,test_accuracy))
self.saver.save(sess, 'model/mnistModel') # 保存模型 def test(self):
with tf.Session() as sess:
self.saver.restore(sess, 'model/mnistModel')
Accuracy = []
for i in range(int(10000/self.batch_size)):
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.X_flat: test_x, self.y: test_y, self.dropRate: 1.})
Accuracy.append(test_accuracy)
print('==' * 15)
print( 'Test Accuracy: ', np.mean(np.array(Accuracy)) ) model = ConvModel(0.001, 64, 30000) # 学习率为0.001,每批传入64张图,训练30000次
model.train() # 训练模型
model.test() # 预测

基于卷积神经网络的手写数字识别分类(Tensorflow)的更多相关文章

  1. TensorFlow卷积神经网络实现手写数字识别以及可视化

    边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...

  2. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  3. TensorFlow(十):卷积神经网络实现手写数字识别以及可视化

    上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu ...

  4. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  5. BP神经网络的手写数字识别

    BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种 ...

  6. 利用c++编写bp神经网络实现手写数字识别详解

    利用c++编写bp神经网络实现手写数字识别 写在前面 从大一入学开始,本菜菜就一直想学习一下神经网络算法,但由于时间和资源所限,一直未展开比较透彻的学习.大二下人工智能课的修习,给了我一个学习的契机. ...

  7. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  8. 第二节,TensorFlow 使用前馈神经网络实现手写数字识别

    一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...

  9. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

随机推荐

  1. .net MVC, webAPI,webForm集成steeltoe+springcloud实现调用服务中心服务的总结

    开始之前,如果没接触过Autofac的,可以移步到Autofac官方示例学习一下怎么使用:https://github.com/autofac/Examples .net 下集成steeltoe进行微 ...

  2. 数独 php

      数独求解程序 php版 转载请注明出处:http://xiezhenye.com/2008/06/%e6%95%b0%e7%8b%ac%e6%b1%82%e8%a7%a3%e7%a8%8b%e5% ...

  3. Windows核心编程:第3章 内核对象

    Github https://github.com/gongluck/Windows-Core-Program.git //第3章 内核对象.cpp: 定义应用程序的入口点. // #include ...

  4. html不规则表格设计

    <table border="1px" style="border-collapse:collapse;"> <tbody> <t ...

  5. 【DirectX】 AudioVideoPlayback 中的事件BUG

    当访问 Video 中的 Audio 属性时,会造成 Video 的所有事件失效.经过反汇查看源码,原来在访问Audio属性时,Audio会通过当前Video对象创建一个新实例.而这个新实例会覆盖掉当 ...

  6. cefsharp

    快速上手 js和C#互相调用. C#调用js比较容易.JS调用C#代码,现有两种方法.老方法的缺点是只支持单页,如果切换页面,原有创建的变量就失效了.新方法没有这些问题. 老方法: Cefsharp ...

  7. JQuery 知识

    1.修改标签内容: *html( )  相当于innerHTML * text(  )  相当于innerText 2.属性操作: *attr(  )  读/写/添加/设置属性 *removeAttr ...

  8. Mysql root账号general_log_file方法获取webshell

    在前面的phpmyadmin漏洞利用专题中介绍了如何通过root账号来获取webshell,但在现实情况中,由于Mysql版本较高以及配置文件的缘故,往往无法直接通过root账号写入网站真实路劲下获取 ...

  9. Spring Boot中使用Redis数据库

    引入依赖 Spring Boot提供的数据访问框架Spring Data Redis基于Jedis.可以通过引入spring-boot-starter-redis来配置依赖关系. <depend ...

  10. 使用httpClient模拟http请求

    在很多场景下都需要用到java代码来发送http请求:如和短信后台接口的数据发送,发送数据到微信后台接口中: 这里以apache下的httpClient类来模拟http请求:以get和Post请求为例 ...