[BZOJ 1135][POI2009]Lyz

题意

初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双。已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋。

有 \(m\) 次操作,每次包含两个数 \(r_i,x_i\) 代表来了 \(x_i\) 个 \(r_i\) 号脚的人。\(x_i\) 为负,则代表走了这么多人。 对于每次操作,输出溜冰鞋是否足够。足够输出 TAK, 否则输出 NIE.

\(n\le 2\times 10^5,m\le5\times 10^5,k\le1\times 10^9,d\in[0,n],1\le r_i\le n-d,|x_i|\le1\times 10^9\)

题解

被某Robbery少许加强后丢到了胡策里...

由霍尔定理, 二分图存在完美匹配当且仅当一侧的任意一个子集中的点连接的另一侧的点的数量都不小于这个子集的大小. 虽然看上去要枚举子集但是实际上我们发现不连续的几段更有可能满足霍尔定理的要求, 所以只要连续区间都满足霍尔定理的要求那么所有子集就都满足了. 感性证明如下:

假设选中了一个不连续的子集, 那么显然可以在不改变另外一侧的邻接情况下在当前子集中添加新的点. 如果不能添加新的点的话可以把子集拆成若干部分, 每个部分是一个连续段. 显然拆开后或者添加新点后更可能会破坏霍尔定理的要求.

也就是说如果设 \(i\) 号脚的人共有 \(s_i\) 个, 那么溜冰鞋不足当且仅当存在任意一个区间 \([l,r]\) 满足下式:

\[\sum_{i=l}^rs_i>k(r-l+d+1)
\]

那么我们拆开移项就可以得到:

\[\begin{aligned}
\sum_{i=l}^rs_i-k(r-l+1)&>kd \\
\sum_{i=1}^r(s_i-k)&>kd
\end{aligned}
\]

于是就变成了一个支持单点加法的动态区间最大子段和问题. 线段树动态DP经典操作.

加强版里不保证 \(r\le n-d\), 需要继续考虑 \(r>n-d\) 的情况. 此时溜冰鞋不足的充要条件相当于:

\[\sum_{i=l}^rs_i>k(n-l+1)
\]

显然当 \(r=n\) 的时候左侧取到最大值, 我们只计算 \(r=n\) 时是否满足条件即可. 此时相当于:

\[\sum_{i=l}^ns_i>k(n-l+1)
\]

设 \(S\) 是 \(\langle s_i\rangle\) 的前缀和, 那么我们可以发现上式等价于:

\[\begin{aligned}
S_n-S_{l-1}&>kn-k(l-1) \\
k(l-1)-S_{l-1}&>kn-S_n
\end{aligned}
\]

左侧的最大值显然也可以用线段树维护出来.

参考代码

#include <bits/stdc++.h>

const int MAXN=1e5+10;
typedef long long intEx; struct Node{
struct Data{
intEx sum;
intEx lmax;
intEx maxs;
intEx rmax;
Data(){}
Data(intEx val){
this->sum=val;
this->lmax=this->rmax=this->maxs=std::max(this->sum,0ll);
}
Data friend operator+(const Data& a,const Data& b){
Data ans;
ans.sum=a.sum+b.sum;
ans.lmax=std::max(a.lmax,a.sum+b.lmax);
ans.rmax=std::max(a.rmax+b.sum,b.rmax);
ans.maxs=std::max(a.rmax+b.lmax,std::max(a.maxs,b.maxs));
return ans;
}
};
int l;
int r;
Data val;
Node* lch;
Node* rch;
Node(int,int);
void Maintain();
void Add(int,int);
}; int n;
int q;
int k;
int d; int main(){
scanf("%d%d%d%d",&n,&q,&k,&d);
Node* N=new Node(1,n);
for(int i=0;i<q;i++){
int p,x;
scanf("%d%d",&p,&x);
N->Add(p,x);
if(N->val.maxs>1ll*k*d)
puts("NIE");
else
puts("TAK");
}
return 0;
} Node::Node(int l,int r):l(l),r(r){
if(l==r)
this->val=Data(-k);
else{
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->Maintain();
}
} void Node::Add(int x,int d){
if(this->l==this->r)
this->val=Data(this->val.sum+d);
else{
if(x<=this->lch->r)
this->lch->Add(x,d);
else
this->rch->Add(x,d);
this->Maintain();
}
} inline void Node::Maintain(){
this->val=this->lch->val+this->rch->val;
}

加强版写的比较蠢...写了一个维护最大子段和的和一个区间加法区间最值的线段树...

#include <bits/stdc++.h>

const int MAXN=1e5+10;
typedef long long intEx; struct Node{
struct Data{
intEx sum;
intEx lmax;
intEx maxs;
intEx rmax;
Data(){}
Data(intEx val){
this->sum=val;
this->lmax=this->rmax=this->maxs=std::max(this->sum,0ll);
}
Data friend operator+(const Data& a,const Data& b){
Data ans;
ans.sum=a.sum+b.sum;
ans.lmax=std::max(a.lmax,a.sum+b.lmax);
ans.rmax=std::max(a.rmax+b.sum,b.rmax);
ans.maxs=std::max(a.rmax+b.lmax,std::max(a.maxs,b.maxs));
return ans;
}
};
int l;
int r;
Data val;
Node* lch;
Node* rch;
Node(int,int);
void Maintain();
void Add(int,int);
}; struct NodeX{
int l;
int r;
intEx add;
intEx max;
NodeX* lch;
NodeX* rch;
NodeX(int,int);
void PushDown();
void Maintain();
void Add(int,int,int);
void Add(const intEx&);
}; int n;
int q;
int k;
int d; int main(){
scanf("%d%d%d%d",&n,&q,&k,&d);
Node* N=new Node(1,n);
NodeX* K=new NodeX(0,n-1);
for(int i=0;i<q;i++){
int p,x;
scanf("%d%d",&p,&x);
N->Add(p,x);
if(p!=n)
K->Add(p,n-1,-x);
// printf("%lld %lld\n",N->val.maxs,K->max);
if(N->val.maxs>1ll*k*d||K->max>-N->val.sum)
puts("No");
else
puts("Yes");
}
return 0;
} NodeX::NodeX(int l,int r):l(l),r(r),add(0){
if(l==r)
this->max=1ll*l*k;
else{
int mid=(l+r)>>1;
this->lch=new NodeX(l,mid);
this->rch=new NodeX(mid+1,r);
this->Maintain();
}
} void NodeX::Add(const intEx& d){
this->add+=d;
this->max+=d;
} void NodeX::Add(int l,int r,int d){
if(l<=this->l&&this->r<=r)
this->Add(d);
else{
this->PushDown();
if(l<=this->lch->r)
this->lch->Add(l,r,d);
if(this->rch->l<=r)
this->rch->Add(l,r,d);
this->Maintain();
}
} void NodeX::PushDown(){
if(this->add){
this->lch->Add(this->add);
this->rch->Add(this->add);
this->add=0;
}
} void NodeX::Maintain(){
this->max=std::max(this->lch->max,this->rch->max);
} Node::Node(int l,int r):l(l),r(r){
if(l==r)
this->val=Data(-k);
else{
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->Maintain();
}
} void Node::Add(int x,int d){
if(this->l==this->r)
this->val=Data(this->val.sum+d);
else{
if(x<=this->lch->r)
this->lch->Add(x,d);
else
this->rch->Add(x,d);
this->Maintain();
}
} inline void Node::Maintain(){
this->val=this->lch->val+this->rch->val;
}

[BZOJ 1135][POI2009]Lyz的更多相关文章

  1. bzoj 1135 [POI2009]Lyz 线段树+hall定理

    1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 573  Solved: 280[Submit][Status][ ...

  2. 1135: [POI2009]Lyz

    1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二 ...

  3. 【BZOJ】1135: [POI2009]Lyz

    题意 有\(1\)到\(n(1 \le n \le 200000)\)号的溜冰鞋各\(k(1 \le k \le 10^9)\)双.已知\(x\)号脚的人可以穿\(x\)到\(x+d\)的溜冰鞋. 有 ...

  4. BZOJ1135: [POI2009]Lyz

    1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 264  Solved: 106[Submit][Status] ...

  5. 【BZOJ1135】[POI2009]Lyz 线段树

    [BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...

  6. BZOJ 1115: [POI2009]石子游戏Kam

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 545[Submit][Stat ...

  7. BZOJ 1142: [POI2009]Tab

    1142: [POI2009]Tab Time Limit: 40 Sec  Memory Limit: 162 MBSubmit: 213  Solved: 80[Submit][Status][D ...

  8. bzoj 1133: [POI2009]Kon dp

    1133: [POI2009]Kon Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 242  Solved: 81[Submit][Status][D ...

  9. bzoj 1138: [POI2009]Baj 最短回文路 dp优化

    1138: [POI2009]Baj 最短回文路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 161  Solved: 48[Submit][Sta ...

随机推荐

  1. 并发编程之 wait notify 方法剖析

    前言 2018 元旦快乐. 摘要: notify wait 如何使用? 为什么必须在同步块中? 使用 notify wait 实现一个简单的生产者消费者模型 底层实现原理 1. notify wait ...

  2. [转]csv文件导入Mysql

    本文转自:https://blog.csdn.net/quiet_girl/article/details/71436108 本篇博客主要讲将csv文件导入Mysql的方法(使用命令行). Step1 ...

  3. 使用Ajax的Time实现倒计时功能

    网上有网友想实现一个功能,就是倒计时的功能.以某时间点与当前时间比较,还剩余时间,进行实时显示.这个问题,让Insus.NET想起以前有做过一个实时时钟有点相似.http://zzk.cnblogs. ...

  4. MFC函数—CSingleDocTemplate

    前提:在InitInstance() 函数的初始化过程中,我们可以看到代码CSingleDocTemplate* pDocTemplate; pDocTemplate = new CSingleDoc ...

  5. 提供PPT嵌入Winform/WPF解决方案,Winform/WPF 中嵌入 office ppt 解决方案

    Winform/WPF 中嵌入 office ppt(powerpoint)解决方案示: 1. 在winform中操作ppt,翻页.播放.退出:显示 总页数.当前播放页数 2. 启动播放ppt时录制视 ...

  6. C#中,Json的序列化和反序列化的几种方式总结

    在这篇文章中,我们将会学到如何使用C#,来序列化对象成为Json格式的数据,以及如何反序列化Json数据到对象. 什么是JSON? JSON (JavaScript Object Notation) ...

  7. JS 定时器 setTimeout 与 setInterval 的区别和用法

    定时器: window.setTimeout(function(){},间隔时间毫秒); -- 定时炸弹,延迟执行,只执行一次 window.setInterval(function(){},间隔的时 ...

  8. 【模板】 ST表

    某dalao的代码 void ST(int n) { ; i <= n; i++) dp[i][] = A[i]; ; ( << j) <= n; j++) { ; i + ( ...

  9. 漫画 | Java多线程与并发(二)

    1.什么是线程池? 为什么要使用它? 2.Java中invokeAndWait 和 invokeLater有什么区别? 3.多线程中的忙循环是什么? 4.Java内存模型是什么? 线程内的代码能够按先 ...

  10. ApplicationListener用法

    ApplicationListener是spring提供的接口,作用是在web服务器启动时去加载某些程序. 用法: 1.实现ApplicationListener接口,并重写onApplication ...