1.tensorflow中模型的保存

创建tf.train.saver,使用saver进行保存:

saver = tf.train.Saver()
saver.save(sess, './trained_variables.ckpt', global_step=1000)

1.1.在保存时需要注意参数在创建时需要传入name参数,读取参数时凭借name属性读取。

def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1, name=name)
return tf.Variable(initial) W_conv1 = weight_variable([5, 5, 1, 32], name='W_conv1')

1.2例子

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True) def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1, name=name)
return tf.Variable(initial) def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape, name=name)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1]) W_conv1 = weight_variable([5, 5, 1, 32], name='W_conv1')
b_conv1 = bias_variable([32], name='b_conv1')
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64], name='W_conv2')
b_conv2 = bias_variable([64], name='b_conv2')
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024], name='W_fc1')
b_fc1 = bias_variable([1024], name='b_fc1')
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10], name='W_fc2')
b_fc2 = bias_variable([10], name='b_fc2')
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_)) # cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session()
sess.run(tf.global_variables_initializer()) for i in range(500): batch = mnist.train.next_batch(100) train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
if i % 100 == 0:
train_accuracy = accuracy.eval(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy)) print("!!!!!")
print('test accuracy %g' % accuracy.eval(session=sess, feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0
})) saver = tf.train.Saver()
saver.save(sess, './trained_variables.ckpt', global_step=1000) # with tf.Session() as sess:
# new_saver = tf.train.import_meta_graph('my_test_model-1000.meta')
# new_saver.restore(sess, tf.train.latest_checkpoint('./')) # print(sess.run(W_conv1))

效果:

2.模型的恢复

2.1.开始会话-->找到参数存放的文件,使用import_meta_graph方法导入文件-->恢复参数:

sess = tf.Session()
new_saver = tf.train.import_meta_graph('trained_variables.ckpt-1000.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))

2.2创建恢复的graph对象:

graph = tf.get_default_graph()

2.3按照模型保存时的参数名来重新加载参数:

W_conv1 = graph.get_tensor_by_name("W_conv1:0")
b_conv1 = graph.get_tensor_by_name("b_conv1:0")

2.4例子

import tensorflow as tf

sess = tf.Session()
new_saver = tf.train.import_meta_graph('trained_variables.ckpt-1000.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./')) graph = tf.get_default_graph()
W_conv1 = graph.get_tensor_by_name("W_conv1:0")
b_conv1 = graph.get_tensor_by_name("b_conv1:0")
print('W_cov1:', sess.run(W_conv1))

效果:

tensorflow模型的保存与恢复的更多相关文章

  1. [翻译] Tensorflow模型的保存与恢复

    翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...

  2. tensorflow模型的保存与恢复,以及ckpt到pb的转化

    转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以 ...

  3. tensorflow 1.0 学习:模型的保存与恢复(Saver)

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  4. tensorflow 1.0 学习:模型的保存与恢复

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  5. TensorFlow笔记-模型的保存,恢复,实现线性回归

    模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_t ...

  6. Tensorflow模型变量保存

    Tensorflow:模型变量保存 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 pyt ...

  7. 三、TensorFlow模型的保存和加载

    1.模型的保存: import tensorflow as tf v1 = tf.Variable(1.0,dtype=tf.float32) v2 = tf.Variable(2.0,dtype=t ...

  8. 超详细的Tensorflow模型的保存和加载(理论与实战详解)

    1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...

  9. tensorflow模型的保存与加载

    模型的保存与加载一般有三种模式:save/load weights(最干净.最轻量级的方式,只保存网络参数,不保存网络状态),save/load entire model(最简单粗暴的方式,把网络所有 ...

随机推荐

  1. cisco 的ACL

    搞网络好几年了,怎么说呢,水平一直停留在NA-NP之间,系统的学完NA后,做了不少实验,后来也维护了企业的网络,各种网络设备都玩过(在商汤用的Juniper srx 550 我认为在企业环境,非IDC ...

  2. poi 读取使用 Strict Open XML 保存的 excel 文档

    poi 读取使用 Strict Open XML 保存的 excel 文档 某项目有一个功能需要读取 excel 报表内容,使用poi读取时报错: 具体错误为: org.apache.poi.POIX ...

  3. ss的使用配置(电脑、手机FQ)

    注:FQ仅用于google查阅资料等,禁止违规违法行为 自己搭建ss服务 1.vps购买:https://www.alpharacks.com/holiday 按流程填完相关信息(Operating ...

  4. POJ 2726

    #include <iostream> #include <algorithm> #define MAXN 10005 using namespace std; struct ...

  5. POJ 2509

    #include <iostream> #include <stdio.h> using namespace std; int main() { //freopen(" ...

  6. 判断一个类是否为另一个类的实例 instanceof关键字和isAssignableFrom方法的区别

    Which of the following is better? a instanceof B or B.class.isAssignableFrom(a.getClass()) The only ...

  7. C# 多线程八之并行Linq(ParallelEnumerable)

    1.简介 关于并行Linq,Ms官方叫做并行语言集成(PLINQ)查询,其实本质就是Linq的多线程版本,常规的Linq是单线程的,也就是同步的过程处理完所有的查询.如果你的Linq查询足够简单,而且 ...

  8. apt 下载安装包

    1) Try both without sudo, apt-get download will pass and apt-get -d install will fail (root required ...

  9. Python学习--11 面向对象高级编程

    多重继承 Python里允许多重继承,即一个类可以同时继承多个类: class Mammal(Animal): pass class Runnable(object): def run(self): ...

  10. Jdbc Url 设置allowMultiQueries为true和false时底层处理机制研究

    一个mysql jdbc待解之谜 关于jdbc  url参数 allowMultiQueries 如下的一个普通JDBC示例: String user ="root"; Strin ...