冒泡排序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQsAAAAvCAYAAAD0H+/GAAAV9klEQVR4Xu3dBZDsOpIF0DvLzMzMzLyzzMzMzMw0y8zMzMzMMLPMzMzMMBvnhbJD4++y5WpXd7/+lREd7/8qW5bS0s3MmynVfXKWswbOGrjbNfBwSR4xiX//I8m/JPnnvQd1n70bPLd31sBZA1eqgWdK8qFJnirJ0yT50yS/meTDk/zAnj05g8We2jy3ddbA1WrgpZN8dZJHmnnsPyZ5+yRftleXzmAxr0nKf6j2FXfuP/dS+F3czkMnebokP38Xj+E2df0xk/xokl9K8sFJ/jrJIyR5swYSj5zkT5I8d5I/22Pg1wUWBvEoSf4wydNPBvLKSV4qydsl+b89BrmxjcdtbpwYEDpz7f5iYxuXvfw5k3xna+QLkrznZRu8xP3myDsleY82GZ/6GvRxie7f2lvfLckrJXnxJP81GaUQ5H3bZ6+e5Ov30MJ1gcU/JIF8wOJJuoG8bpIvTvIQzX164yT/u8dAN7TBbXu9dv07JvnUDffudekLJvmR1tinJXmHvRo+sp1vTALEyZcmecMj2znfto8GeHmMyYcd4CWeLMnvtke9dZLP3uOxNw0sXj/JlySpfn1NW7j/0w32LZK83B6Db238fpJ3af/9As2187+8idc+MVj9VpK/mhnLiyX5vvb5JyZ51x3He0xTT5HkV1to9sAkz5rkF49p6HzPLhp4sCQv1AzKnPf9WEl+LsnjJ7FePm+Pp07B4jWSmKij8v1Jvnb04u66Q56FS7jcH91d+5VJ3qBbtCytEGUvMemfpaWeKNjCuCqB+l8+8zBg+FXt849Ncr8NHTJ5/u3A9Ty23pPb0Gw+JAnPj3x3i4u33C+dd9Xh3Jb+3aZrn6h57f+U5PmT/Moeg5uCxSe1+HS07U9O8s6jFw+Chcs+ZeJ6Cw3eqHEYH5/krY545vSWh28fFFj04ccOzV9bE9PQru8IoOBJXYeIm8XPN1kQhOYFchsPgNw+BLyj4xBuS2v+9OgNO1xXnum3J3mVJP99oM1na/Ph70eeeVPB4sGTfFsSqSHCuxCi7El4lncDLPAS5apx/182CXf7FIKd/rFTNNzaPIPFNuXKKgg/XzEJ8lZhE57MHJRh+MnGoxUHsKX150jygUn+Pcmb7AA8I8+2pnmlL9O8il8+cBMC/3OTGD9v/mfXGl8Ci+dN8lMzDTxPU6CvTuVZaBsie1G/keQ1k/S8xdq4Rr4vsPi9JNw2Ljr+4JlP7C6LI02cJTHeZ2wXADEAsCbvl+RhZkjj/r7eswCKn77W6I7fKxa6Suu61nXp8TdtHqswVJj0gCR/1wzFoyeRlbKo/jzJxyTheY8KEvgjklisshbTjMVoO1uve5EkCGlhI75rSQCjMPhpW/q1Qt/Ze/YACyk17OwWkToFBn/UUqev03gDbXxQkr9pjT1BW8CnUHSBBW8FYUTwA9+zZSAbr+XS/sTKPd4JvRg77+bRkujrmizxQHVvDxafn+TNZxoFUkCa4EoskjURGkqvkiduVYRr91zn99zvj0zykq0TCpsYvl9oXoCPgQnD6HPpc/JRSd5noOPm82cl+fEkL7+zR7z0eMCmahOn9P4D/axLvqFxlTgpocus7AEWv7NzevGPm6XfMNajLhWPilFL/rXFq0c1NngTV3aNQBXXF2nMs+PhjcgaWHjX39Imr/YOgQUrW4VXH9DSc2vP77muJ2zFQGv3XNf30uJCAzyCOhrpx49b6Ayu7Iva9whDZDs9HhJFUcDz11oNxGU5j1E94Vm+qWUSt4bRD9vG9Fwt0zgbJt8tYMECSBUdI/LREL4Xbj5rUsJisKiyEMggk2JPQZoJEdbAgrclIyNPTriy6hpGZA0sxKZ9mvbeCBbCAXU89Ex4Q8j0JamFpPiJsNzaEbZMxSLFrzE86lKENVclCrGktPXtEKG51BdcmtBUuKgo8h6h7x5g8XVHsNxv0xhn1l2FIjIG0hNp0/eejMpifq8jtS5MmlqOH0rywq09IY+FhFAFFtLBNTGOfOQ9buOSyuAsgQXLINY04Ygy3mffwNWsgYWJBIhKgIWxH6vXrbqRljdXrkuEBoqTuOrEnDA3RuQzkpizJYrmptb3sVsIa2PXJyRRYXlVwjsSWr1aF0b1z9ZfBnMtQcAjUtMjLPG+HuT6PcBij9QpYuW12ugs3OIsasA9WIxWdGKzyRxYPE6rlzf+Sp1eJ1jgJejgJVqf7UXB0P/Mhtm2BhbcZwVvJfcmsACUX9FxD0jH+zYyc0TF5lDP3QDYKZdToRgylJUWTl+F4JVkXYBhvy0d34WLU1jIKx8pN3jKJD+cxJaHV23G62IMdyNYjFSdPkZLex0CC58LNViZKViw6EjWPUXxFdduzrPgSbB4CE3iJQPOrcVu0nzGbVzlZvdjmNauAAsTvMi7uhYJiuglAGxkX4Gy/KqqNSllFKaCNOXiLolFhqNhBffKnAgBvzWJLAGxoADnN294wcCBwSpRWVzGzWf9Iju2HL5qO6bdEr4i+Oe8AvPUJjKewDR0dr1sB6/d2Ec2ADKwdOUeHjbAuGj3FGBxaNC9EqZWcItnsRdY9HUWSL3yLDbMoc2X9mAhDJLuLG9CY/LxCLWtQOFek8E4CJJNeFeiig/L3YPITeMsWD8TVRbCggaie9SjCAf6MBRXxdpuEbrs090AFFiUlyvsqC0DIzwTI2UjpfQsD0cGyboBSsWFPHkrTORpW8SAwTkVJZ7PyMwZhn5s3juObpRoFSlUylVBF9L0jiyBxYseQHe55zpUo6+zMDgsM5fP31K4cJPBAkO+S3ls98boRujzB41QM6FqYddlv94s3qHiGLtzK262NbknaLUhbgU+JX/ZJp6Jaa/AVG4SWHCXEYMmdQnrbVFfpjhO/cz3dnyYti1OrvYWAQ6sbAnjxjtR+2PBA7nKWnlPMiGHRHrSdgUgwCMpQbzy0Ahg8j4fr/ueoWFYVODyGLzr/vu559Grvi9lb6b39dyWFGwVRi6CxYgye7BQP1AKe8tWHXaojZsMFqckOI2bRekFc45YUsCzdG6GfL1JSVgUoU0vQOEHGyl6SO8sNS6EjICFSVZb5ZfmAzKMcSHHpk5766ydPTbQOUGqrzdg5GQpthw5x9P5rkkKm9uPTCSK+NRnEP9aXID6kABu6XHFebWN3LXa065KZWEgQJO96ncc07F3fErh5QgZ8RbOwbCm1f3sChaUVBMLycOacqvn5DJgUWz2ksKgPStO5ghOnx8KQ04JFqwDj0vmRz2+6kwTA9+wJmtg4X7FcdxTgACUWBbupyI4aTHVqrU3xLPtSJxKX2ex1qe5748FC642EpK1VbuDsBsls+f6YVHKvsgElIykSqdteVe8vb4mpwcy2QNgT3iknjdSRKfdCiuM134O3IJMoPY/p3kOSG4Ll8i0HCrfPuZdzd3TZ3V8r193IomlMIT1MsmmgogrZnVa7t17FyrdelKob+cyYLFVKVvBAsDtcrJQ11EuJwsFLLia6ii42Q5XHZURsFhrq5+g0rl9OrDu7cFCVupv1xptYc6jtuuOBQu3AzeLnEVdS/OtdYsVBvwluAAhtO0DW0RI0PM/7vVZFWrx0JSNE6EUzmmkzgFQAwTCc5HVkDo3X6u2Rhl2hTS/3by3uTW5ZTxr1zIywtxnaBdeZH72Jjh77wIgWBRzO9puMlisKfMy37Ps3NZjhG6L+DRBj0lZi6drv4/sSJVo9/25LRWcrHOvI+PG8o9Y/V4fFnTvgfGaeQ+AH7gB/QpJeDI8opF9TD0PghxVeu+99vs5+urR72i8yamPeFSEph/GQS4yP3uDhcZVrUFwIg7vSbd6CZcBi5FCGgSQjTRkq2fBzdtyfsTIwsfhIKdMIhvWboIIf+aO63vIJFxRguwdie+lJ00yIm16Wa/gsvqRWbAYeWMlh8KupWfhFXAHQuoSoXbt95DWREwWMeuZ/ntt/Mhu3gTDAXxYcuH1tPpSn2W2CP5FAuHU4j3ymmpMeBQcywNPARZY48rNc/3k7aeu7GXA4tSp0+IshA4sudoFeW7MvJOtjhFgoWTd3wjncswztt6D+FMiLPVWMfHWNpaul5/fO5wb7Z8iN1W6tXPXfYeMxlKbrL1t3L1Y0JVdAJLC9TqG0XzBGa1lcPpjE3mbwlGeY1/IZQzSnjazEalloHJqAbRf2B10dBFanQIsuGbiwkoL2d3Xs74GexPBgkVFsiHVWIw+s7DX0WSOZp9mQ0ZfvrMWMOVEwdKWdFg9Q1qsUoB4Jy42DsXk2Fuu87AblpsH0Kent5KbvFO1N1XMRT8MieKzCgXMGaRsHeozrb84pNNplmburNcKGRGrCgUZmqUsy17vb+otndSz0GmLAkNcbH9lJmpANxEsqm+ISAux9o74nDu+h2hHauoY2YPg5MZWeFYFN7cRLHiDGPzes1ASvXrAS/diFIUBgip64iULJadnvPQFhX39xaF3bDHiNqriVZaKtzItmuqLyY6tCj1mngFJhG5VqJ6Us9BB7hl2/BBze1PBwkLm+k1/nuAYpc/dY9yVNZh+z8vDlZg8c0VDa2DByomtl9h+e0MUExHxMovVhyG2z7Mk2pLOE3qpAxkRGYLiQGQD1F5sKakeecboNayxcfTVsdz5+w82MC20cpsKyjkuq/cStO+ZSzzPk7YzTXg/BInZ79nxmbkAUMoL3MuzHRm+MNmZLhX+KA5zVMFi6vQqT8raUu5dOe2lgSNp3rZdMEpwqk3wgorcq/ax0wqGtopww96LOgDZojMx5vZaID2huYWMH2HtxYq9rIFFhRQ2OHnBc2lZOXs7WcXUFtRcCbAioNq27ecIWL2lDIKJzWOxR4HoP6t0USa8VXE7Xe+oRB5uyZafdZhWw1rM3t2c8NAAE7HPyPteSjf3nB5AxkUgOXtRmUn3wJ9H453hy1j90bLtY9Uoda3qVU0HudhQdgrOYqSTl/EsRtrvr1kDC9ZVWSu3D9+CyXYPpdX2bfGvEt2Rw27pFOFlq32V4zpGn5WeKyM3ARBjtTVd3+e26S+BBS6jP/dCTh45V789ok0FWywer2HtXA2AU1knhUMAo9+XUPqlI8y5lCSRCbF4+udueV/IcBbX4hk5SnCp7VeY8DqAu/ZvLN3nABiLpX4SUNaixjd3nz6reKx+V1r10DPwQ1XWfQiEegKUp0mnQEMGS99OeZqbOhnPVJODoAZmd84fXQILew/mjm6nlIpn9jqDc4tnMeoW18tCrs4dcFKAxQKLI4maENa9jhaz6D+zZTAUa/FqeBpzuyrdb1LhBCp1jCy1iYkLO5cf5+4i0crlA1SIOD93MJUlsAAErKFqwjoikPeg77U5yUuv8EYsXgz+oUltYr57+5LOtS0zUEy/+71/YyBSzoi+YzNGJie9C4VYXLr077EiFObd1NkkNtrJOMz9Tks9w/feb+3ENT4As5TdoG/vsABlKWshBFUvUe/70K+F9dxSnY1hXtA54FjbvXusztzX7w3RV+Xxd4rMbsrp3lvAYiR1uqYsnIQ6/r7mgXVQiDK1aArLLJLa+8A6c/n9WRhSTeJzk4q7WAL9LTBexZwg34Q9degP0DIZyqXdAhZ17fO1vH9/dB9yGZ9gMhenwEtyoMuauI5FLj2p0OXeC1U8q4QuFEAdKu9fe453Kuzqt337f/pYS0MutS0bQsdVJ+E96vsUuAGeZ/GmVCgzklLLipNGpA8tLmL8mRv9VixeQwjI+xOyTM+9oAs/S1G/0eKdAWu8BW9xC0k70vfpNUCpDibuK1XvtWAh28FNJaw5C8qKLBXTABJ1CQiqEovHROx5DmcxIMKWXEWFNhZdX8jkKPrp8X/9i1zjLOpaYY0wAmdTwGrBAblyrRG5dzYHDYgzJpwA3Rcm1W3CMilYrvFlZfqbNYc2um19Di/B+65UvvQnj8OmOmNSUi0ExNFx9VlTWxXUP4xK7zFw4b3LOeDs95H0xV39c7wzWcQqIfedfgGkPfS8NCYhKt3QB09R2viCf9lzi/qoYqFqscUVO695FsKEChW2luvO9YuLKo2prkLt/Uj2w/Ntb2aRe8Do25dWU1di0c+RXJ4rNKiMhHttTedaznECfdu8F2ksMrfrdDpOngQLpbinF89j4UYEqOirGHsOLLSlglFYc9mToegXd8M7Yz2Nd8vemaXxiMNxUiZ/EXd1vbloDgB+HtLWvSPVTl+afWgbvHDU83lqnnXoJG1b671rXqv9OcKSuZ/lGHmHW66RXpZylhHxzr3bCzkFwanNQ66j71jnOk69Tq9eA4stAx65loWt2gnnUvbhQ92PvKuTm1gdcWYBVl3D+igJnv4UgvH7DjojUE1G1kH8WWGHNmRGuHojJdX9ASxzBOjcuE06CxBpV7J2YjjXXQ0AT8b4+zmin8I1IVkfwhmvTACrynIrGhvZgDbtM08LKYzgPAXrzwNUmYt38xyEs0pTPMZlD2nu94ng+3ii03XQ63ItvOKtMC7AYi/QXFsbQj9EvA1t/fkdd+47BVgYpJgPCcgLqJ+Aoxzxvwlcwl1GwF0lWBiz3bAVvwsXxOZ22ak9cPCpvzrmrlewMSDKKNNCZ1nVKcgWqKUXg04B5dALwiVwRSvFW9ex5NJ8wMWfeJXeijR1HRd1tOqyP3tTmAXcirhmQXAngBAD70Qti2kqwg2kK/fYomKpxbZi6EMnNfE0AAiSEg+E3+Hi32bhoZobQp4t7+gm6MQclp0BnObCPZIbU7BQUMKaEJNxjnXlutf+BkTRXGxmgsy5rb1SnOHAiknP7A0WxsVq2Lglw6GP9UNFYtjeumN6xWqHRIktaym9CliWftwXUFA0PbK+XM6ltmunYf9s9y7xHRaeMGLE8tIDIq3eRWWvAIisjbTfIcKYZ4AcZG2kQucsIY9KuAMocUD9mQ9TfQrf9vxB65uwwOb6wAv1/sxr2Y5Tnz+xhx7wNgrorG0eBZC/h+yRWZhrVwzroWKu6TNYJsoUilRqbG+w0CexV1/XP9dPC4+l7V1q4YP41aYdi+TYGNbzgAcvRRjgX5bHHg/uJQ9FjDglVae/76Ed16iG1Sep4FFy0r28BWAH+HkRQAaPgSNRFl0CDKrmBDB61si5DHW/d83QiNeVyhtbeR3akaHZ0u89FsF1tWEfBwKbZwhIj/md1KvqOy8ImSws4xkfrG85FVj0A4VW/SatufjrFGChJkI6r+oO+kVBIdxFaS6xpUVja71Ye/ozBHu/NDoXiqnBOPVBJtV3vIgwoM+2OJYPsWrc/nAZIyd2bdGHcAVA4SJGTgnf0vZNv1bYiMQEzs5cvYmAwaOw9njP5shi/cZVgMV1v1RgUWBlvEKStfMGrrvP5+ffDg3Y+s/DkM7maV8VUTmiPSGjMNMWABze3C+sPUg79wawGFHc+ZqzBk6pAfuE9kj5791HIe+wN3kGi73Vf27vrIFbqoEzWNzSF3se1lkDe2vgDBZ7a/Tc3lkDt1QDZ7C4pS/2PKyzBvbWwBks9tboub2zBm6pBs5gcUtf7HlYZw3srYH/BzdZg3tr4E/BAAAAAElFTkSuQmCC" alt="" longdesc="http://www.cnblogs.com/resn/p/__SVG__undefined" width="133.984" height="23.9844" />
冒泡排序是比较简单的排序方法,它的思路是重复的走过要排序的序列,一次比较两个元素,如果顺序错误,就交换元素的位置,直到没有元素需要交换位置。
原 始 |
6 |
1 |
8 |
5 |
9 |
7 |
第一次 |
1 |
6 |
8 |
5 |
9 |
7 |
第二次 |
1 |
6 |
8 |
5 |
9 |
7 |
第三次 |
1 |
6 |
5 |
8 |
9 |
7 |
第四次 |
1 |
6 |
5 |
8 |
9 |
7 |
第五次 |
1 |
6 |
5 |
8 |
7 |
9 |
……
代码实现:
1.lst = [6,1,8,5,9,7]
2.for i in range(len(lst)-1):
3. for j in range(len(lst)-1):
4. if lst[j] > lst[j+1]:
5. tmp = lst[j]
6. lst[j] = lst[j+1]
7. lst[j+1] = tmp
8.print lst
选择排序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQsAAAAvCAYAAAD0H+/GAAAV9klEQVR4Xu3dBZDsOpIF0DvLzMzMzLyzzMzMzMw0y8zMzMzMMLPMzMzMMBvnhbJD4++y5WpXd7/+lREd7/8qW5bS0s3MmynVfXKWswbOGrjbNfBwSR4xiX//I8m/JPnnvQd1n70bPLd31sBZA1eqgWdK8qFJnirJ0yT50yS/meTDk/zAnj05g8We2jy3ddbA1WrgpZN8dZJHmnnsPyZ5+yRftleXzmAxr0nKf6j2FXfuP/dS+F3czkMnebokP38Xj+E2df0xk/xokl9K8sFJ/jrJIyR5swYSj5zkT5I8d5I/22Pg1wUWBvEoSf4wydNPBvLKSV4qydsl+b89BrmxjcdtbpwYEDpz7f5iYxuXvfw5k3xna+QLkrznZRu8xP3myDsleY82GZ/6GvRxie7f2lvfLckrJXnxJP81GaUQ5H3bZ6+e5Ov30MJ1gcU/JIF8wOJJuoG8bpIvTvIQzX164yT/u8dAN7TBbXu9dv07JvnUDffudekLJvmR1tinJXmHvRo+sp1vTALEyZcmecMj2znfto8GeHmMyYcd4CWeLMnvtke9dZLP3uOxNw0sXj/JlySpfn1NW7j/0w32LZK83B6Db238fpJ3af/9As2187+8idc+MVj9VpK/mhnLiyX5vvb5JyZ51x3He0xTT5HkV1to9sAkz5rkF49p6HzPLhp4sCQv1AzKnPf9WEl+LsnjJ7FePm+Pp07B4jWSmKij8v1Jvnb04u66Q56FS7jcH91d+5VJ3qBbtCytEGUvMemfpaWeKNjCuCqB+l8+8zBg+FXt849Ncr8NHTJ5/u3A9Ty23pPb0Gw+JAnPj3x3i4u33C+dd9Xh3Jb+3aZrn6h57f+U5PmT/Moeg5uCxSe1+HS07U9O8s6jFw+Chcs+ZeJ6Cw3eqHEYH5/krY545vSWh28fFFj04ccOzV9bE9PQru8IoOBJXYeIm8XPN1kQhOYFchsPgNw+BLyj4xBuS2v+9OgNO1xXnum3J3mVJP99oM1na/Ph70eeeVPB4sGTfFsSqSHCuxCi7El4lncDLPAS5apx/182CXf7FIKd/rFTNNzaPIPFNuXKKgg/XzEJ8lZhE57MHJRh+MnGoxUHsKX150jygUn+Pcmb7AA8I8+2pnmlL9O8il8+cBMC/3OTGD9v/mfXGl8Ci+dN8lMzDTxPU6CvTuVZaBsie1G/keQ1k/S8xdq4Rr4vsPi9JNw2Ljr+4JlP7C6LI02cJTHeZ2wXADEAsCbvl+RhZkjj/r7eswCKn77W6I7fKxa6Suu61nXp8TdtHqswVJj0gCR/1wzFoyeRlbKo/jzJxyTheY8KEvgjklisshbTjMVoO1uve5EkCGlhI75rSQCjMPhpW/q1Qt/Ze/YACyk17OwWkToFBn/UUqev03gDbXxQkr9pjT1BW8CnUHSBBW8FYUTwA9+zZSAbr+XS/sTKPd4JvRg77+bRkujrmizxQHVvDxafn+TNZxoFUkCa4EoskjURGkqvkiduVYRr91zn99zvj0zykq0TCpsYvl9oXoCPgQnD6HPpc/JRSd5noOPm82cl+fEkL7+zR7z0eMCmahOn9P4D/axLvqFxlTgpocus7AEWv7NzevGPm6XfMNajLhWPilFL/rXFq0c1NngTV3aNQBXXF2nMs+PhjcgaWHjX39Imr/YOgQUrW4VXH9DSc2vP77muJ2zFQGv3XNf30uJCAzyCOhrpx49b6Ayu7Iva9whDZDs9HhJFUcDz11oNxGU5j1E94Vm+qWUSt4bRD9vG9Fwt0zgbJt8tYMECSBUdI/LREL4Xbj5rUsJisKiyEMggk2JPQZoJEdbAgrclIyNPTriy6hpGZA0sxKZ9mvbeCBbCAXU89Ex4Q8j0JamFpPiJsNzaEbZMxSLFrzE86lKENVclCrGktPXtEKG51BdcmtBUuKgo8h6h7x5g8XVHsNxv0xhn1l2FIjIG0hNp0/eejMpifq8jtS5MmlqOH0rywq09IY+FhFAFFtLBNTGOfOQ9buOSyuAsgQXLINY04Ygy3mffwNWsgYWJBIhKgIWxH6vXrbqRljdXrkuEBoqTuOrEnDA3RuQzkpizJYrmptb3sVsIa2PXJyRRYXlVwjsSWr1aF0b1z9ZfBnMtQcAjUtMjLPG+HuT6PcBij9QpYuW12ugs3OIsasA9WIxWdGKzyRxYPE6rlzf+Sp1eJ1jgJejgJVqf7UXB0P/Mhtm2BhbcZwVvJfcmsACUX9FxD0jH+zYyc0TF5lDP3QDYKZdToRgylJUWTl+F4JVkXYBhvy0d34WLU1jIKx8pN3jKJD+cxJaHV23G62IMdyNYjFSdPkZLex0CC58LNViZKViw6EjWPUXxFdduzrPgSbB4CE3iJQPOrcVu0nzGbVzlZvdjmNauAAsTvMi7uhYJiuglAGxkX4Gy/KqqNSllFKaCNOXiLolFhqNhBffKnAgBvzWJLAGxoADnN294wcCBwSpRWVzGzWf9Iju2HL5qO6bdEr4i+Oe8AvPUJjKewDR0dr1sB6/d2Ec2ADKwdOUeHjbAuGj3FGBxaNC9EqZWcItnsRdY9HUWSL3yLDbMoc2X9mAhDJLuLG9CY/LxCLWtQOFek8E4CJJNeFeiig/L3YPITeMsWD8TVRbCggaie9SjCAf6MBRXxdpuEbrs090AFFiUlyvsqC0DIzwTI2UjpfQsD0cGyboBSsWFPHkrTORpW8SAwTkVJZ7PyMwZhn5s3juObpRoFSlUylVBF9L0jiyBxYseQHe55zpUo6+zMDgsM5fP31K4cJPBAkO+S3ls98boRujzB41QM6FqYddlv94s3qHiGLtzK262NbknaLUhbgU+JX/ZJp6Jaa/AVG4SWHCXEYMmdQnrbVFfpjhO/cz3dnyYti1OrvYWAQ6sbAnjxjtR+2PBA7nKWnlPMiGHRHrSdgUgwCMpQbzy0Ahg8j4fr/ueoWFYVODyGLzr/vu559Grvi9lb6b39dyWFGwVRi6CxYgye7BQP1AKe8tWHXaojZsMFqckOI2bRekFc45YUsCzdG6GfL1JSVgUoU0vQOEHGyl6SO8sNS6EjICFSVZb5ZfmAzKMcSHHpk5766ydPTbQOUGqrzdg5GQpthw5x9P5rkkKm9uPTCSK+NRnEP9aXID6kABu6XHFebWN3LXa065KZWEgQJO96ncc07F3fErh5QgZ8RbOwbCm1f3sChaUVBMLycOacqvn5DJgUWz2ksKgPStO5ghOnx8KQ04JFqwDj0vmRz2+6kwTA9+wJmtg4X7FcdxTgACUWBbupyI4aTHVqrU3xLPtSJxKX2ex1qe5748FC642EpK1VbuDsBsls+f6YVHKvsgElIykSqdteVe8vb4mpwcy2QNgT3iknjdSRKfdCiuM134O3IJMoPY/p3kOSG4Ll8i0HCrfPuZdzd3TZ3V8r193IomlMIT1MsmmgogrZnVa7t17FyrdelKob+cyYLFVKVvBAsDtcrJQ11EuJwsFLLia6ii42Q5XHZURsFhrq5+g0rl9OrDu7cFCVupv1xptYc6jtuuOBQu3AzeLnEVdS/OtdYsVBvwluAAhtO0DW0RI0PM/7vVZFWrx0JSNE6EUzmmkzgFQAwTCc5HVkDo3X6u2Rhl2hTS/3by3uTW5ZTxr1zIywtxnaBdeZH72Jjh77wIgWBRzO9puMlisKfMy37Ps3NZjhG6L+DRBj0lZi6drv4/sSJVo9/25LRWcrHOvI+PG8o9Y/V4fFnTvgfGaeQ+AH7gB/QpJeDI8opF9TD0PghxVeu+99vs5+urR72i8yamPeFSEph/GQS4yP3uDhcZVrUFwIg7vSbd6CZcBi5FCGgSQjTRkq2fBzdtyfsTIwsfhIKdMIhvWboIIf+aO63vIJFxRguwdie+lJ00yIm16Wa/gsvqRWbAYeWMlh8KupWfhFXAHQuoSoXbt95DWREwWMeuZ/ntt/Mhu3gTDAXxYcuH1tPpSn2W2CP5FAuHU4j3ymmpMeBQcywNPARZY48rNc/3k7aeu7GXA4tSp0+IshA4sudoFeW7MvJOtjhFgoWTd3wjncswztt6D+FMiLPVWMfHWNpaul5/fO5wb7Z8iN1W6tXPXfYeMxlKbrL1t3L1Y0JVdAJLC9TqG0XzBGa1lcPpjE3mbwlGeY1/IZQzSnjazEalloHJqAbRf2B10dBFanQIsuGbiwkoL2d3Xs74GexPBgkVFsiHVWIw+s7DX0WSOZp9mQ0ZfvrMWMOVEwdKWdFg9Q1qsUoB4Jy42DsXk2Fuu87AblpsH0Kent5KbvFO1N1XMRT8MieKzCgXMGaRsHeozrb84pNNplmburNcKGRGrCgUZmqUsy17vb+otndSz0GmLAkNcbH9lJmpANxEsqm+ISAux9o74nDu+h2hHauoY2YPg5MZWeFYFN7cRLHiDGPzes1ASvXrAS/diFIUBgip64iULJadnvPQFhX39xaF3bDHiNqriVZaKtzItmuqLyY6tCj1mngFJhG5VqJ6Us9BB7hl2/BBze1PBwkLm+k1/nuAYpc/dY9yVNZh+z8vDlZg8c0VDa2DByomtl9h+e0MUExHxMovVhyG2z7Mk2pLOE3qpAxkRGYLiQGQD1F5sKakeecboNayxcfTVsdz5+w82MC20cpsKyjkuq/cStO+ZSzzPk7YzTXg/BInZ79nxmbkAUMoL3MuzHRm+MNmZLhX+KA5zVMFi6vQqT8raUu5dOe2lgSNp3rZdMEpwqk3wgorcq/ax0wqGtopww96LOgDZojMx5vZaID2huYWMH2HtxYq9rIFFhRQ2OHnBc2lZOXs7WcXUFtRcCbAioNq27ecIWL2lDIKJzWOxR4HoP6t0USa8VXE7Xe+oRB5uyZafdZhWw1rM3t2c8NAAE7HPyPteSjf3nB5AxkUgOXtRmUn3wJ9H453hy1j90bLtY9Uoda3qVU0HudhQdgrOYqSTl/EsRtrvr1kDC9ZVWSu3D9+CyXYPpdX2bfGvEt2Rw27pFOFlq32V4zpGn5WeKyM3ARBjtTVd3+e26S+BBS6jP/dCTh45V789ok0FWywer2HtXA2AU1knhUMAo9+XUPqlI8y5lCSRCbF4+udueV/IcBbX4hk5SnCp7VeY8DqAu/ZvLN3nABiLpX4SUNaixjd3nz6reKx+V1r10DPwQ1XWfQiEegKUp0mnQEMGS99OeZqbOhnPVJODoAZmd84fXQILew/mjm6nlIpn9jqDc4tnMeoW18tCrs4dcFKAxQKLI4maENa9jhaz6D+zZTAUa/FqeBpzuyrdb1LhBCp1jCy1iYkLO5cf5+4i0crlA1SIOD93MJUlsAAErKFqwjoikPeg77U5yUuv8EYsXgz+oUltYr57+5LOtS0zUEy/+71/YyBSzoi+YzNGJie9C4VYXLr077EiFObd1NkkNtrJOMz9Tks9w/feb+3ENT4As5TdoG/vsABlKWshBFUvUe/70K+F9dxSnY1hXtA54FjbvXusztzX7w3RV+Xxd4rMbsrp3lvAYiR1uqYsnIQ6/r7mgXVQiDK1aArLLJLa+8A6c/n9WRhSTeJzk4q7WAL9LTBexZwg34Q9degP0DIZyqXdAhZ17fO1vH9/dB9yGZ9gMhenwEtyoMuauI5FLj2p0OXeC1U8q4QuFEAdKu9fe453Kuzqt337f/pYS0MutS0bQsdVJ+E96vsUuAGeZ/GmVCgzklLLipNGpA8tLmL8mRv9VixeQwjI+xOyTM+9oAs/S1G/0eKdAWu8BW9xC0k70vfpNUCpDibuK1XvtWAh28FNJaw5C8qKLBXTABJ1CQiqEovHROx5DmcxIMKWXEWFNhZdX8jkKPrp8X/9i1zjLOpaYY0wAmdTwGrBAblyrRG5dzYHDYgzJpwA3Rcm1W3CMilYrvFlZfqbNYc2um19Di/B+65UvvQnj8OmOmNSUi0ExNFx9VlTWxXUP4xK7zFw4b3LOeDs95H0xV39c7wzWcQqIfedfgGkPfS8NCYhKt3QB09R2viCf9lzi/qoYqFqscUVO695FsKEChW2luvO9YuLKo2prkLt/Uj2w/Ntb2aRe8Do25dWU1di0c+RXJ4rNKiMhHttTedaznECfdu8F2ksMrfrdDpOngQLpbinF89j4UYEqOirGHsOLLSlglFYc9mToegXd8M7Yz2Nd8vemaXxiMNxUiZ/EXd1vbloDgB+HtLWvSPVTl+afWgbvHDU83lqnnXoJG1b671rXqv9OcKSuZ/lGHmHW66RXpZylhHxzr3bCzkFwanNQ66j71jnOk69Tq9eA4stAx65loWt2gnnUvbhQ92PvKuTm1gdcWYBVl3D+igJnv4UgvH7DjojUE1G1kH8WWGHNmRGuHojJdX9ASxzBOjcuE06CxBpV7J2YjjXXQ0AT8b4+zmin8I1IVkfwhmvTACrynIrGhvZgDbtM08LKYzgPAXrzwNUmYt38xyEs0pTPMZlD2nu94ng+3ii03XQ63ItvOKtMC7AYi/QXFsbQj9EvA1t/fkdd+47BVgYpJgPCcgLqJ+Aoxzxvwlcwl1GwF0lWBiz3bAVvwsXxOZ22ak9cPCpvzrmrlewMSDKKNNCZ1nVKcgWqKUXg04B5dALwiVwRSvFW9ex5NJ8wMWfeJXeijR1HRd1tOqyP3tTmAXcirhmQXAngBAD70Qti2kqwg2kK/fYomKpxbZi6EMnNfE0AAiSEg+E3+Hi32bhoZobQp4t7+gm6MQclp0BnObCPZIbU7BQUMKaEJNxjnXlutf+BkTRXGxmgsy5rb1SnOHAiknP7A0WxsVq2Lglw6GP9UNFYtjeumN6xWqHRIktaym9CliWftwXUFA0PbK+XM6ltmunYf9s9y7xHRaeMGLE8tIDIq3eRWWvAIisjbTfIcKYZ4AcZG2kQucsIY9KuAMocUD9mQ9TfQrf9vxB65uwwOb6wAv1/sxr2Y5Tnz+xhx7wNgrorG0eBZC/h+yRWZhrVwzroWKu6TNYJsoUilRqbG+w0CexV1/XP9dPC4+l7V1q4YP41aYdi+TYGNbzgAcvRRjgX5bHHg/uJQ9FjDglVae/76Ed16iG1Sep4FFy0r28BWAH+HkRQAaPgSNRFl0CDKrmBDB61si5DHW/d83QiNeVyhtbeR3akaHZ0u89FsF1tWEfBwKbZwhIj/md1KvqOy8ImSws4xkfrG85FVj0A4VW/SatufjrFGChJkI6r+oO+kVBIdxFaS6xpUVja71Ye/ozBHu/NDoXiqnBOPVBJtV3vIgwoM+2OJYPsWrc/nAZIyd2bdGHcAVA4SJGTgnf0vZNv1bYiMQEzs5cvYmAwaOw9njP5shi/cZVgMV1v1RgUWBlvEKStfMGrrvP5+ffDg3Y+s/DkM7maV8VUTmiPSGjMNMWABze3C+sPUg79wawGFHc+ZqzBk6pAfuE9kj5791HIe+wN3kGi73Vf27vrIFbqoEzWNzSF3se1lkDe2vgDBZ7a/Tc3lkDt1QDZ7C4pS/2PKyzBvbWwBks9tboub2zBm6pBs5gcUtf7HlYZw3srYH/BzdZg3tr4E/BAAAAAElFTkSuQmCC" alt="" longdesc="http://www.cnblogs.com/resn/p/__SVG__undefined" width="133.984" height="23.9844" />
选择排序是从等待排序的数组里选择一个最小(或者最大)的元素,拿出来放入新的数组,直到取出全部元素。
原 始 |
6 |
1 |
8 |
5 |
9 |
7 |
3 |
第一次 |
1 |
6 |
8 |
5 |
9 |
7 |
3 |
第二次 |
1 |
3 |
8 |
5 |
9 |
7 |
6 |
第三次 |
1 |
3 |
5 |
8 |
9 |
7 |
6 |
第四次 |
1 |
3 |
5 |
6 |
9 |
7 |
8 |
第五次 |
1 |
3 |
5 |
6 |
7 |
9 |
8 |
第六次 |
1 |
3 |
5 |
6 |
7 |
8 |
9 |
每一次排序后最小的数组放在已排序的序列的最后
实现代码
1.lst = [6,1,8,5,9,7,3]
2.for i in range(len(lst)):
3. tmp = lst[i]
4. pos = i
5. for j in range(i+1,len(lst)):
6. if tmp > lst[j]:
7. tmp = lst[j]
8. pos = j
9. a_tmp = lst[i]
10. lst[i] = tmp
11. lst[pos] = a_tmp
12.
13.print lst
插入排序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQsAAAAvCAYAAAD0H+/GAAAX7UlEQVR4Xu3dA5AtzbIF4HWfbdu2bdu2bes+27Zt27Zt2/Z98Z1XeaL+vo3qjZm58++MmDhzZneXa2Xmyqza98lFLiNwGYEH9BF4qCQPm8S//57kn5P806k7dZ9TF3gp7zIClxG40hF4uiQflOTJkjxFkj9J8htJPiTJ956yJRewOOVoXsq6jMDVjsBLJPmKJA83U+0/JHmbJF98qiaNgMUDJXmkVuH/JPm7nZV7Vxnkb5Lcb+f71/G4wX+wVjFz7j+uoxE3rM4HT/JUSX7uhrXr3tqcR03yQ0l+Mcn7J/mrJA+T5I0bSDx8kj9O8uxJ/vQUgzQCFu+U5GNaZR+Z5N13VPwcSX6sPf+TreFLrz9vkh9J8r87yp971OA9XhLI+vgHlPWYzYzjAyqDaffnB5RzzCvPmuTbWgGfm+TdjinsyHetkbdP8q5tMT75NYzHkV24la+/c5KXT/IiSf5z0kMuyHu1v71Kkq85xQhsgcWjJfnNJFDqz5pfhDwZle9M8qLtYZ36noUXXyPJlyT5jiR+/8fRCmae+/0GEjb6IxxQDrPttdt7b5fkkw4o49hXAOcPtkI+OcnbHlvgke9/XZJXaGV8UZLXO7K8y+vHjQArjzL54AVe4omS/E6r4i2SfMZx1f3/21tg8WVt83rWArFQRuWlk3xzexjR8sILLzKddAwwkV9L8nJJfnu0oslzx4DF8zTTTpGsCcDF9TqXAOK/nCncWH13+/vHJWHdXac8SZJfaa4ZN/IZk/zCdTboXl43t/75mkKZs8TtpZ9N8thJ3jTJZ59ivNbA4k2SfFZXyb8MVkgD/WhbXE/Q3mEm/dfK+zr/EB14/XUzsZSzVw4FC26HAbYxrkqgPotqKoD2y9sfPyrJB+5okMXzrwvPP0iSmpMdRd559AOSvFZ7iQWIPNsjLNKrduf2tO82PcsN/4NmoT93kl8+ReeWwOKZG2qJ2+6Vl0zyykmAzTEiXvy6Sb56ZyGHgkXvfuys8kY9bpEsAYK//941tZbfzH++ycLKfehmQVFwyO0l4B3tBxdeWPOnRl84wXNlmX5LkldcUdTP1NbDUNBiDiwQWFhWbKsoAEvh55vpyZwRx33VlQiBcM7ntQ7/VkfAPFaSz0+CQHz1JL86MyiPmORLkzxD+4zJq649BM0hYIFBLlON+f9SZ4zaYKd/+AQLYqmIC1jsG1zrnPvJ9bX2KUiu5wO3CAOC/gs6DmBP6c+S5P2S/FuSNzwB8IzUbU+zSiltVsUvLbzEkuY56D8C/We2Cp+ChcFCSjJjbNTXbHFc5QANm5bL8PVtE//3pAKNs9m4FD7zf1EQgnRBcNJuf5+EqT3nZkBi5M1ztk0FfLhAwObNtjqU5B0aIQvoPnzg+Qdtg8VExx88/ZnNZX6khbMmr5bkadsDQAwAbMl7t3EfBQvz9ClbhZ7wc0rmKrXrVtOFx98oyes35cRNslb/tq39R04iKmVTIfdFAj9+q9Ducxzfh7bNKmoxjVjsKGrXoy+YBCHNbcR3rQlg5AY/ZQu/lus7+04PFhh4IFA5FTbdJ0zeEq756Pa3T0/ylpPPRQ+EWW08pNy0sY+T5AcacJgccfs/mmkZc/DDktgAFRmB0udYbKVFNAM/ACzPJUzaLR7GnPxhEmMFsM0HcN0SzwDaUbD4nAVXEUhVuBtXYpNsiTkXXiXC1YDhJgvz2/p6sdZIiU3WOguaFUCAidC/vwufE8rnPQc6RsnaH1IBXuYE6QADVd55BLAJJuCU3mf0pSRf2wIQOCmuy6z0YGFjAwgEGeKtJzf7lw0CxOUe/O5MqS/QTLolBp+F8V1J3re5HKN9OhdYVP2sF/7qOUXUZ4tA5dd/VWvEjzcLa6RNW2Bhrr+xLV7lLYEFF7ASr8yR8NyW0LgFFo/bkoG23rmuz4XFuQZ4BOF1/SsFONcmlgf3mVBceDTjuCRcWuDJzZYucCznMTpOkggpe/O8141+yNanZ2sW/6yb3IOF3z+xaf4iFS1ALkUvnvNzTPKU9yuTk2thUwgjrol3xJe3RF58JWU9xsLDCFibpcqjMWhUrpGozTF5HnNVAiHjuAUWLAMRGYBK9oSrt8CCb9qHae+NYMEdwD8YZwLgrPk1qY1k4xOaWzlz+UY2qXQDiofbXi741po9xecSsYS0tW0t8rhUFy6Na8oqfPE513crz0JEYmSDHtPZb0/Cz0KybE3cSD0jBOf3J3n+VlglPckJARZ4lVoYI/WNPMMae/MNsKAZ+JoWHJGJKio15YWW6tsCCwsJEJUACyHqPRm5I31deoYlujeydUx903e5BpKTmOqENSErdUQ+deJyc9mn2vfRmwvrYNfHJuGyX5WwjrhWlGC5UX3do9nRLCIeAbfEfN3DIBgFi1FzdHRwHqUxzdPnNRLpxDw8VEbAgsUh9mzD1Ga5TrDASyCXKtsVOYuh/+kdg7AFFsznL7yXggWgFGUr7kGEgLuMzBwRoNJzN9bMlMspVwwZSkvPcXEjde19Bq/ERQeG/bF0lrtghMRCCVyU1ZY8afMsRCxfqSmvu+/cBLDg/wlblXBHNFTG4CEyAhbKxR30WaIFFjT6fQ+peOUdHBDTbs4NYUnQeAhNYpKFlou3GG2Kg0RAmAtVZnb/LqutTxsHlBZ4baB6VrQK0UsA2EjY+g2aVeYdi3JuEyJNt4hPm0wUDDF4KjKbC/hNzXrVPhsKcH7D6MA2hdJH1r6yzVEV0W+yQ9PhWZZzERPuq7/Puf3WqUNklOzUdfa8aIcQKst95ACgcLGx8g4L2z68W+4oWDi9tjXRO8b+TrSEiU2EEZlOSKTiR/iD/HVm+V4ZBYtpuQUWe+vb83wPFtwg0Z6yJpRjHBBqe4HCuxZD5acg2RxAKxHCxnL3IHLTOAvaz0IVhbChgegp8lH6CJ7xEPmgbfeIsezD3QAUoNdRAG7HO7YCR3gmrpBzS8KzLBwRJGDBYiku5IkbuOOabGLAgI8rUT8lM6cY+r6Zd6H4UaJVkKOimBK6kKZ3ZBQs9gzs3mdNAqCgUaC9wSEmQvxXYtceORYsuEAnSY/tGm3iuT7aRsNbULWx6zFnYmi8peSYp+78ZklzFn0v/FbgU/IXbeFZmHXupn/+JoEFcxkxaFGX0N429TFXGiC6Rd5EPkpsTuH7PQIcaNkSFpe5wifZ8EDO+iXmaS7hsN4Vnnzrts5ZJCWIVxYasSfMp9yiEoqGYpGBy2Iw1/3nc/0xrtq+Fr2ZvtdzW0Kw8pzuyChYuIlnJN4+OgEG2MapganQlE0lIcsgHnri81iwOCfBiVeYnoTFnCOWJPCs3ZshXm9REhqFa9MLUPi+zmKbmwuaGhdCRsDCIquj8mtziwx7ofbAoaHTXjsr6hQH6KzbPt9AJEOUYs+VcywdJHyBgbYx+5GJRBKf/AziX5sLUC8J4BYel5xXx8g9qzzlvk5zAwGa6FXvOhpjc3xOYeVwGfEW7sHQb3k/w2BxToKzLIsaAH63geuP1UqEGc2BcMCJaWbjrcXPpwNuE3ENzgkWtAOLiaaTjy87Ez+Ab9iSLbDwvsgV81RfgBLNwvzkRgqLyYupsyHqdiJxKn2exVab5j4/FCyY2khIigKXhLA75sSvTSn6IhJQMhIqnfbJXLH2JAqW9EDW3/fCIlXfSBKdcsut0F/nOXAL79GA8jOb5YDktnGJSMtS+vYhczX3Th/V8bl23bmeb9SyYCJv5UHsaSz/DIlCpmAxV44QH2vknGJB4FHwBie5WahrLNeKhgIWTE15FMxsoelRGQGLrbL6BTqXgev9HiyMu9vNtsTGdK6HHAoW3gVuyqJRj8njURYt3N+fgguQTPjrW52ZfG599vzPdM2y0ETwCFcK5zSS5wCoAQJhuYhq4OhEXuoqCG54uTTccX0C/OcUSoab+zStkruRn1GwOGfjbhpYnLOvNDuz9RBh3hbxaYEiovYKf1oCHMGdVNZlX85tyeCsjOTqm35TUCNavx8PG7q3wIRGWQ+AH7gB/XJJWDIsopHcmJ4HQY46pW1e+yMSffbotzbe5NxXPEpC0w79IHcjP6NgoQMSU04ltFBlt03BghY2oT06M1HX2kpr0xhFjjLte39wpN1YX0lZzLw990eMlC1LFTllEYkE3QQxRnPX9TlYxxQlyN4R/56LaJERYdNjrYJjx4flajOyxkqW3K61uvAKuANcWgkOp857iN4hJouYVafft/qP7GZNUBzAhybHOU2zL7VZZIvgX6Spn1vMIw6x+oRHwbHcbxQsrpKz+LRGQjmbIrty7iap6YBV5pm/Izhp0NFQUZU1TcoCPDQ5DkWcGzN/qCsGLBxa8lMZhOee9K3yEX9ShPE75RNvvbPnc/H5U7tzo/VLcpOlWyd3vce838NheWd6AZS/2dAVXQCSuLW6htF6wRltRXD6axNZm9xRlmOfyKUPwp4OsxGhZaBybgG0rpioi47uulajYGFR7R3otU4ZiLojsLcstEc+Ry1eSTpb+fWO1bMGaEQiPj/C4E/b530WDFKNxugjC6e6mgz5esi9oNqqn5hyImFpTzis+iosViFAyVNMbBxK3T9yyoV4nZfd0NzWQB+e3ktuCk9SIEjHEhwI67NcAWsGKVuX+kzzL5bGcxqlmYv8lcuIWJUoSNGsRVlONXdTa2m3ZXGqhsyV04NFfxu4cM3I7dzMOdmRxMQVyvd1QUvkZR29XusPl8ZGrLMjnj0m/byv69Abx5VxCoKTGeueA1IJN7cRLFiDGPzespASvXnBSzdZlI71VElPCFKuZHE+9aicC9YE6fMvltaYzYjbADpElIq1MrWE+2SyQ7NCD9m3QBKhW33azVkYqNE7OEcayIKoRKEeLD6i86NHDuP0C939jtB4mmrM5KNBnzCJI7hQekmAE9NPOecQXExFDablGxNcicUzlzS0BRa0HN96je13NkQyEeEvG4veDZECT5MoSziP6zU67+axOBB8k9yLPSnVpxxv2lg/+uxYiugnBiuZJlp5TQblHJfVWwnKV+caz2MdutOkTkQjMfszO+qyFgBKWYGnsmxHus9NdqdLuT+Sw9AQw6HTnrMQd0WCIGb2IDWfi4bHQfBlK7egBwsLtMik59qwBGSvOT9SZv09UlO7UekBSBiKhpk7mSc3wQQVuVdFIHcB117RLmcv6lZzm87CmDtrgfSE5jYyfgQI8hV72QKLcikkz5ngubCsmD0Li09tQ83xOpKA6vSvryOg9dYiCBY2i8UZBaL9tNLdNOG9A3ei532FQ3+p8J4kv2k2rM1s7ubEugNMxI3n5nst3AwAag1Y7/aFvdSLtW3s7QWK2pzhy2j9vVzc3uGkxGW9yukgdw+UbXEWbrISHuIr1eamuWlHF9yWlhppUOVK0DZCTWLIRNzYYuzTTPEW4vVrRJFsxmK7+1TZaVskKjmarS/EVXL9IvI57cDs01dMNjLMoNWJVP6vFN2Ry26NKVcISFU6LlCjpefSyC0AxFgdTddG70rO6WUNLHAZ/dc0iMkj5+q7R5SjnzQeq2HrXg2AU8e3JQ4BjP5cQrXLGGHOK2fG2rB5+npH1kY94xAbjWvzjFwluFb2y054HcBd5zfW3mN92iz1lYDc3Orf3HvazL2tdldYdakO/FCldS+BUE+AsjSNKdAQwdK2c97mZt+pU04OpQ7M7vCLPVjURG1NrhOBNhU0rdOJW+/43KAzeS2kuTsUEG41iLQCTbAkrvOrUK6OAJo10w8yMxERmMTkaw9eAniU2yGrEgDW1WI2vegM04w1IurC0lg62qxcnIDkH4IsRQwzYefi48xdJFqZfIAKEScKNJU1sAAEtKFswvqqSECr7XU4yaSXe7PE7fR1mtt3aX9gFSlbhKoA3Ni4cq6S5ZDMiL5DI0YWp3Gv08DG8tDvjtFskQrWTd1N4qCdiMNadM3n5rdO4uofgFlTWsbbHBagrEUtKFn5EjXfS98W1nNL5Y5bF8YccJzyUOd0nfVKW1ulx99JY+jBwgKlPW+CrH17GeS36BFFOgGFR3xRR4wLpFg5XKgiRvWZdpCIMtVosi1tkjr7AJSY/H5sDK4V/9yiqpO0yoP+NtjSUXvkG7enDjlxGyyGMmn3gEU9y3VjZfVX9wklc/Us5uIUzPNI3oznaOTKDeFrA3KuirpKjIUksTn3bmQ9WYfcriLVvOP/xmMrDLlWvmiIMS7X1jxq+xS4AZ66WFOuCsB/CS1LThqR3rW46+PPvMi6tVa5gKw/Lsv03gtjwWqv0KU5A9Z4C9biHtd/pO3TZ4BSXUx8jxyoHixoza0LMmyMClFaGFvJJ31D6mwHbTv1p6FzJfVYHDTlXMqsyWcilTabuxR4aYCAC5+yP4HoWROBk6FF1voDSISQEVQlNo+F2PMcLC9E2JqpKNHGpusTmdzp4d0l2eIs6j1uDTfirTplYEyBXJnWiNw7h4MGRPjaDdB9YlK9xi2zZpjGx0p/j6eylg667a2HlSC6VSc8hT9ZHA7V6RN3mAvowBRTnzZ1FmnuftmlunuLwfo0l3PA2Z8j6ZO7+nLtSclYlULuM+0CSKcY57Xxs7eNjfFgKQob3+VftjiLvmAbmClncJEsNsie7z3tOYv63swqv0+qmlskwMTgWVAFOn0c36bj4vipewIkVfnhV9fvtLljyyUsFP7+SL49sHG8mUbuAaMfI2E1t0bb9HMkl7ZzDXqux7kbpuUcJ9CXzXoRxiJzp06ni4AlQUPVbe31ufqKv9naeEBFW7mHc2ChLJYMt+bYm6GML+6GdUZ76u+eszNrfeGH46Qs/iLu6nkgivgG/CykvWdHqpw+NXvpGDx3VP0sNXUt3aRtjZprytm+4ZZMQ7Zbc3fI58h/IWdutzk3t3dlFCwAhYVXySeHfFnvElgAAlpOai0Rf4buvfQHaurvSDBICCDK2tk7QDa0jTPnxwKZurmJ1uFnTi8vpn20e3pPKU3uM+gsPGkxAlb+Z2/ZADym3khKdX8ByxwBOtd3i84G5LqVbN0YznozBywZ/e/XiHZy17hkfdq6/rLaaFWaW9LYyAG0aZuBPlLY3J6D9afgKA5kpHoQzjJNzf+xlzT350TcNcISnbpQ/VhuuVesFcrFvjkVaG7tj/puYwfa+vs77ry3BRY+t3CYtRW9sAkg0NBXnnWtWwIL/ESZVybMZM5dL2YRFm+w1en+cwvcYvAjouMHuy9xh/BpmZ1O2ck9cPGpn7rmri/LBLOuDKaNTrMCK+XJpeeDTgFlqa24BKYod6EXmhy5C1wqvwVvUqSpZ1lZo1mX/d2b3CzgVt85SoOwtgAh7seNWnW+pm8Td4OCYB6bI5qab8uHXrqpiaUBQJCUeCD8zlQJ7JnHB4RnEeXWBpdnzxzdhL5Zw6Iz9om1cH/fSzsHFvgAmsjChy69yQ0okIKHsNRLYMHUcXMUWbvyTGf4UzgPZemMkK4fHax/63eg4Pe5KISJHCWvlAuo3BqEh1j7cl9AYaAl5gA2Juea1VMnDfvF4t01vsPGYw2NaF7zi0grFwIvg4gEIKI2ImBLCoNlAEhpGxGsOU3IouLuAEqhyv7Oh+kG4L7dFAL9nJuTFWr+hB1Z4ue+f+IUfWEISGkQLbTngfz9ydxC6ZNM6gUblBmMLT409XkJLPhxTHH+MdNt6SvUTnnXgX47lEOTTgUg8l99bpMc6sMqF3iwUoCvf2keZzyYlywUFtqUVJ1+v4dyPINX0SanaUfJSe/qI7ATbmNFABk8Bo6krCvPAQMuE1D0o66Rexlq/PjX3Bb+upC0vpXVoRwRmj3tPsUmuK4ynONAYLMMAWmdg7qu9qzVywqiOLllDITF/JYlrULD6yRT0u8uSjm2w2sEp84whfmQe0jTYwbfxkF42YisKQfW+NraeU4x5rgEADxCrJ6iLcCYG9BHW1zLRzHotx9cxsiNXXvaw10xzriIkVvC95R905/lNiIxgTPL+dj9c47+sigoZ9azNbKav7EEFsgVBN8WQ3+ODlzKvIzAbRkBp6dZGMLZzPurIipHxo/LyM10BEAO0qaS3iI4Ryq9PHMZgcsIrI+AcP7eG7quYky5vMPW5AUsrmJKLnVcRuAWjMAFLG7BJF66cBmBqxiBC1hcxShf6riMwC0YgQtY3IJJvHThMgJXMQIXsLiKUb7UcRmBWzACF7C4BZN46cJlBK5iBP4PrM1We/NOXwUAAAAASUVORK5CYII=" alt="" longdesc="http://www.cnblogs.com/resn/p/__SVG__undefined" width="133.984" height="23.9844" />
插入排序是一种简单直观的排序算法,原理是通过构建有序序列,对于未排序的数据,在已排序的序列中从后想前扫描,找到相应位置后插入。插入排序通常采用in-place排序,即 只需要用到O(1) 的额外空间的排序。
算法描述:
- 从第一个元素开始,记该元素已经排序,
- 获取下一个元素作为新元素,在已经排序的序列中,从后向前扫描
- 如果该元素(已排序的序列中的元素)大于新元素,,则将该元素移到下一位置
- 重复步骤3, 直到找到已排序的元素小雨或等于新元素的位置
- 将心元素插入该位置
- 重复步骤2 ~步骤5 ,直到排序完成
在排序时,如果元素比较的操作代价比较大,可以采用二分查找,来减少操作。
实现代码:
1.lst = [6,1,8,5,9,7,2,4,6,9,2,32,45,76,8,3,3,4]
2.
3.for i in range(len(lst)):
4. for j in range(i,0,-1):
5. if lst[j-1] >lst[j]:
6. tmp = lst[j-1]
7. lst[j-1] = lst[j]
8. lst[j] = tmp
快速排序 quick sort
又称 划分交换排序;排序n个元素,需要Ο(n log n)次比较 ,最坏情况时需要,Ο(n2)次比较,但这种状况并不常见。
设 有序列 lst = [3,0,1,8,7,2,5,4,9,6] , i= 0 j=9 k = lst[0]
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
3 |
0 |
1 |
8 |
7 |
2 |
5 |
4 |
9 |
6 |
2 |
0 |
1 |
8 |
7 |
3 |
5 |
4 |
9 |
6 |
2 |
0 |
1 |
3 |
7 |
8 |
5 |
4 |
9 |
6 |
2 |
0 |
1 |
3 |
7 |
8 |
5 |
4 |
9 |
6 |
- 以3为基准,从右向左找比 3 小的值 ,j–
- 找到第一个小于三的数字2, lst[i] lst[j]交换位置;
从左向右找第一大于3的数字 8 ,交换 lst[i] lst[j]位置 i++
- 继续从右向左找比3小的数字,直到 i==j 此时第一趟 完成,3的当前位置为正确位置
- 此时大序列可分为两个小序列
sub_lst_01 = [2,0,1]
sub_lst_01 = [7,8,5,4,9,6]
按照第一趟排序的规则 对两个子序列进行排序,直到所有子序列长度为1。
以2为基准,从右向左找比2小的值,找到数字1 比2小,交换两者位置
此时从左向右找比2大的数字,未找到,2的位置为排序后的正确位置
以1为基准,从右向左找比1小的数字,找到0比1小,交换两者位置
从左向右找比1 大的数字,未找到,1的位置为排序后的正确位置
0|
-|
此时序列只剩0 ,长度为1 ,0 的位置为排序后的正确位置
7 |
8 |
5 |
4 |
9 |
6 |
6 |
8 |
5 |
4 |
9 |
7 |
6 |
7 |
5 |
4 |
9 |
8 |
6 |
4 |
5 |
7 |
9 |
8 |
. |
. |
. |
. |
. |
. |
5 |
4 |
6 |
. |
8 |
9 |
5 |
4 |
. |
. |
. |
. |
4 |
5 |
6 |
7 |
8 |
9 |
- 以7为基准,从右向左找到比7小的数字6,交换两者位置
- 从左向右查找到比7大的数字8 交换两者位置
- 从右向左找到比7小的数字4,交换两者位置
- 从左向右查找到比7大的数字,未找到,则7的位置为排序后的正确位置
产生两个子序列 [6,4,5] [8,9]
重复以上操作,直到所有的序列排序完成。
- 八大排序算法的 Python 实现
转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...
- 常用排序算法的python实现和性能分析
常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...
- 十大经典排序算法总结 (Python)
作业部落:https://www.zybuluo.com/listenviolet/note/1399285 以上链接是自己在作业部落编辑的排序算法总结- Github: https://github ...
- 一些排序算法的Python实现
''' Created on 2016/12/16 Created by freeol.cn 一些排序算法的Python实现 @author: 拽拽绅士 ''' '''值交换''' def swap( ...
- 基本排序算法的Python实现
本篇主要实现九(八)大排序算法,分别是冒泡排序,插入排序,选择排序,希尔排序,归并排序,快速排序,堆排序,计数排序.希望大家回顾知识的时候也能从我的这篇文章得到帮助. 为了防止误导读者,本文所有概念性 ...
- 经典排序算法及python实现
今天我们来谈谈几种经典排序算法,然后用python来实现,最后通过数据来比较几个算法时间 选择排序 选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是每一次从待排序的数据 ...
- python基础===八大排序算法的 Python 实现
本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一 ...
- 八大排序算法---基于python
本文节选自:http://python.jobbole.com/82270/ 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 ...
- 十大经典排序算法(python实现)(原创)
个人最喜欢的排序方法是非比较类的计数排序,简单粗暴.专治花里胡哨!!! 使用场景: 1,空间复杂度 越低越好.n值较大: 堆排序 O(nlog2n) O(1) 2,无空间复杂度要求.n值较大: 桶排序 ...
- 十大经典排序算法的python实现
十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序.包括:冒泡排序.选择排序.归并排序.快速 ...
随机推荐
- ML(附录1)——梯度下降
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以).在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的 ...
- WEB开发库收集
1. EASYUI http://www.jeasyui.com/ [INTRODUCTION] jQuery EasyUI framework helps you build yo ...
- dubbo的三种运行方式
1.Tomcat容器内启动 pom.xml 文件中 <build> <resources> <resource> <directory>src/main ...
- SmartGit过期解决办法
1. 快捷键win+R ,输入:%APPDATA%\syntevo\SmartGit\2. 进入smart的版本 如18.1 然后删除setting.xml文件
- docker: Error response from daemon: driver failed programming external connectivity on endpoint jolly_shockley
1. docker 启动image错误 docker: Error response from daemon: driver failed programming external connectiv ...
- Hive介绍和Hive环境搭建
一.Hive介绍 Hive包含用户接口.元数据库.解析器和数据仓库等组件组成,其中用户接口包含shell客户端.JDBC.ODBC.Web接口等.元数据库主要是指定义在hive中的表结构信息,一般保存 ...
- linux 添加用户并赋予root权限
1.添加用户,首先用adduser命令添加一个普通用户,命令如下: #adduser tommy //添加一个名为tommy的用户#passwd tommy //修改密码Changing pass ...
- 【java】浅谈for循环
for语法: for(初始化条件; 判断条件(bool型,不可缺省); 条件改变)// 初始化条件,条件改变可以是多条,eg for(x=1,y=1;x<4;x++,y++) { 执行的操作 } ...
- 关于信号的延迟---verilog
关于信号的延迟---verilog `timescale 1ns / 1ps ///////////////////////////////////////////////////////////// ...
- RGB Resampler IP核的测试
关于RGB Resampler IP核的测试 1.RGB Resampler功能描述 将输入的RGB数据流转换成其它格式的RGB数据流. 2.功能验证 设置源图像像素数据为:3X4格式. 设置RGB ...