1. cv2.VideoCapture('test.avi') 进行视频读取

参数说明:‘test.avi’ 输入视频的地址
2. cv2.getStructureElement(cv2.MORPH_ELLIPSE, (3, 3))  # 构造一个全是1的kernel用于形态学的操作

参数说明:cv2.MORPH_ELLIPSE 生成全是1的kernel,(3, 3)表示size

3.cv2.createBackgroundSubtractorMOG2().apply(image) 对图像进行混合高斯模型

参数说明:image表示输入图片

4.cv2.morpholyEx(image, cv2.MORPH_OPEN, kernel)  # 对图像进行开运算
参数说明:image表示输入图片, cv2.MORPH_OPEN 进行开运算,kernel表示卷积核

对于视频数据,将前景与物体背景进行分开

帧差法:

将连续两帧的图像数据进行差分法,即进行相减操作, 如果其相减后的绝对值大于阈值,则像素点变为255, 否则变为0,通过这种方法来找出视频中运动的物体

混合高斯模型:

将图像分为3-5个高斯模型,一个像素点来了,如果该像素点离任何一个高斯模型的距离大于其2倍的标准差,则为前景即运动物体,否则则是背景

步骤:第一步:初始各种参数

第二步:使用T帧图像构造模型,对于第一个帧图像的第一个像素点,使用u1,σ1构造高斯模型

第三步:对于一个新来的模型,如果该像素在高斯模型3*σ1内,则属于该高斯模型,对参数进行更新

第四步:如果不满足该高斯模型,重新建立一个新的高斯模型

代码:

第一步:使用cv2.VideoCapture() 构造读取模型

第二步:使用cv2.getStructureElement(cv2.MORPH_ELLIPSE, (3, 3)) # 构造形态学使用的kernel,即np.ones((3, 3), np.uint8)

第三步:构造cv2.createBackgroundSubtractorMOG2() 实例化混合高斯模型

第四步:cap.read()从视频中读取文件,并使用model.apply(frame) 使用上混合高斯模型

第五步:使用cv2.morpholyEx(image, cv2.MORPH_OPEN, kernel) 使用开运算进行噪音的去除

第六步:cv2.findCountours找出图片中的轮廓,对其进行循环

第七步:对于周长大于188的轮廓,使用cv2.boundingRect计算外接矩阵,使用cv2.rectangle画出外接矩阵,作为人

第八步:使用cv2.imshow()展示图片,使用cv2.waitkey(150) & 0xff == 27来延长放映的时间

import cv2
import numpy as np # 第一步:使用cv2.VideoCapture读取视频
cap = cv2.VideoCapture('test.avi')
# 第二步:cv2.getStructuringElement构造形态学使用的kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
# 第三步:构造高斯混合模型
model = cv2.createBackgroundSubtractorMOG2() while(True):
# 第四步:读取视频中的图片,并使用高斯模型进行拟合
ret, frame = cap.read()
# 运用高斯模型进行拟合,在两个标准差内设置为0,在两个标准差外设置为255
fgmk = model.apply(frame)
# 第五步:使用形态学的开运算做背景的去除
fgmk = cv2.morphologyEx(fgmk, cv2.MORPH_OPEN, kernel)
# 第六步:cv2.findContours计算fgmk的轮廓
contours = cv2.findContours(fgmk, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]
for c in contours:
# 第七步:进行人的轮廓判断,使用周长,符合条件的画出外接矩阵的方格
length = cv2.arcLength(c, True) if length > 188:
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 第八步:进行图片的展示
cv2.imshow('fgmk', fgmk)
cv2.imshow('frame', frame) if cv2.waitKey(150) & 0xff == 27:
break cap.release()
cv2.destroyAllWindows()

  

带方框的原始图片                                                       进行高斯混合模型的图片

机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)的更多相关文章

  1. 【数字图像处理】帧差法与Kirsch边缘检测实现运动目标识别与分割

    本文链接:https://blog.csdn.net/qq_18234121/article/details/82763385 作者:冻人的蓝鲸梁思成 视频分割算法可以从时域和空域两个角度考虑.时域分 ...

  2. 【Matlab】运动目标检测之“帧差法”

    videoObj = VideoReader('4.avi');%读视频文件 nframes = get(videoObj, 'NumberOfFrames');%获取视频文件帧个数 : nframe ...

  3. [MOC062066]背景建模资料收集整理

    一.相关博客 背景建模相关资料收集,各个链接都已给出. 资料,不可能非常完整,以后不定期更新. -----------------切割线----------------- 这个哥们总结的非常好啊,看完 ...

  4. OpenCV笔记(6)(harris角点检测、背景建模)

    一.Harris角点 如上图所示,红色框AB都是平面,蓝色框CD都是边缘,而绿色框EF就是角点. 平面:框往X或Y抽移动,变化都很小. 边缘:框沿X或Y轴移动,其中一个变化很小,而另外一个变化比较大. ...

  5. OpenCV ——背景建模之CodeBook(2)

    1,CodeBook的来源 先考虑平均背景的建模方法.该方法是针对每一个像素,累积若干帧的像素值,然后计算平均值和方差,以此来建立背景模型,相当于模型的每一个像素含有两个特征值,这两个特征值只是单纯的 ...

  6. 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)

    1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MO ...

  7. 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)

    1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...

  8. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  9. 机器学习进阶-图像形态学操作-腐蚀操作 1.cv2.erode(进行腐蚀操作)

    1.cv2.erode(src, kernel, iteration) 参数说明:src表示的是输入图片,kernel表示的是方框的大小,iteration表示迭代的次数 腐蚀操作原理:存在一个ker ...

随机推荐

  1. DevOps利器- Hygieia平台开发部署

    前言碎语 Hygieia是什么? Capitalone(全美十大银行之一)开源的DevOps利器.使用Hygieia后,在整个软件开发周期中,用户可以选择VersionOne或Jira进行用户故事的追 ...

  2. Jmeter(三十九)User.Properties定义全局变量

    “烟”从物质上满足吸烟者对尼古丁的依赖,但“烟”更从精神上满足了人们对“思想”的欲望---在抽烟的时刻,每个男人都可能成为思想家. ---<冲突> 前面有记到jmeter读取外部文件内容的 ...

  3. oracle基础语句学习

    1.寻找公司所有部门信息 select * from dept; 2.寻找特定列 select dept_name from dept; 3.使用列别名 基本书写方法:列名 列别名 列名 as 列别名 ...

  4. ubuntu14.04安装telnet

    1.首先查看telnet运行状态 netstat -a | grep telnet 输出为空,表示没有开启该服务 2.安装openbsd-inetd apt-get install openbsd-i ...

  5. core 部署

    perfmoneventvwr 1.yum install mysql2.yum install libgdiplus-devel3.COMPlus_ThreadPool_ForceMinWorker ...

  6. go 数据类型type尝试

    package main import "fmt" import "encoding/json" type Human struct{ Name string ...

  7. 入坑机器学习?听听MIT在读博士的AI心得

    随着人工智能技术的火热,越来越多的年轻学者正准备投身其中,开启自己的研究之路.和所有其他学科一样,人工智能领域的新人总会遇到各种各样的难题,其中不仅有研究上的,也有生活方面的.MIT EECS 在读博 ...

  8. python脚本参数传递

    环境:python 库:optparse 效果:python  xxx.py  -parameter1  参数1  -parameter2 参数2 .... 废话少说,直接上代码ok?  xxx.py ...

  9. Struts2学习:interceptor(拦截器)的使用

    对于需要登陆验证.权限验证等功能的网站,每一次请求,每一个action都写一段验证的代码,未免显得冗余且不易维护.struts2提供了拦截器interceptor,为这些页面提供一个切面,或者说公共组 ...

  10. 变量,if.elif .else判断

    一,计算机的了解 基本组成:主板+cpu+内存 cpu: 主频, 核数(16) 内存:大小(8G, 16G, 32G) 型号: DDR3, DDR4, DDR5,  主频(海盗船,玩家国度)      ...