$Gauss$消元

  今天金牌爷来问我一个高消的题目,我才想起来忘了学高消...

  高斯消元用于解线性方程组,也就是形如:

  $\left\{\begin{matrix}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2\\a_{31}x_1+a_{32}x_2+...+a_{3n}x_n=b_3\end{matrix}\right.$​

  好像也可以写成这样:

  $AX=B$

  其实就是小学学的加减消元...

  举个栗子:

  $\left\{\begin{matrix}3x_1+2x_2=5\\ 2x_1+3x_2=10\\\end{matrix}\right.$

  首先从第一列开始,找到第一项系数的绝对值最大的一行放到第一行,把这个系数除去(系数化为$1$):

  $\left\{\begin{matrix}x_1+\frac{2}{3}x_2=\frac{5}{3}\\ 2x_1+3x_2=10\\\end{matrix}\right.$

  发现第二行减去两个第一行就可以消掉第一个未知数,那么就减掉两个好咯:

  $\left\{\begin{matrix}x_1+\frac{2}{3}x_2=\frac{5}{3}\\\ \quad \space \space \frac{5}{3}x_2=\frac{20}{3}\\\end{matrix}\right.$

  再消掉第二行的系数:

  $\left\{\begin{matrix}x_1+\frac{2}{3}x_2=\frac{5}{3}\\\ \quad \space \space x_2=4\\\end{matrix}\right.$

  现在就解出了第二个未知数,再从底往上代回去:

  $\left\{\begin{matrix}x_1+\frac{2}{3}\times 4=\frac{5}{3}\\\ \quad \space \space x_2=4\\\end{matrix}\right.$

  依次解出所有的未知数即可:

  $\left\{\begin{matrix}x_1=-1\\\ x_2=4\\\end{matrix}\right.$

  为什么要将系数绝对值最大的一项作为主元进行消元呢?因为实际做题中用的不是分数而是浮点数,有误差的问题,如果用于消元的主元太接近零,那么下一行就需要减掉非常多倍的上一行,导致精度大量损失.

  怎样判断无解:如果消元结束后发现有一行的系数全为$0$,但是此行的$b$不为$0$,那么未知数取任何值都不满足要求;

  怎样判断无穷组解:如果消元结束后有一行系数全为$0$,$b$也是$0$,那么可以随意取值.

  也就是平时数学中做题可能会碰到的“两个方程左边的本质是相同的,但是答案却不相同,就无解,如果答案相同,说明有$n$个未知数,限制条件却少于$n$个,此时有多组解”。

  注意一点:如果有的方程无解,有的有多组解,总方程组还是无解,所以先判断无解再判断多解.

  

  线性方程组:https://www.luogu.org/problemnew/show/P2455

  题意概述:完全的模板题.

  

 # include <cstdio>
# include <iostream>
# include <queue>
# include <cstring>
# include <cmath>
# include <string>
# define R register int
# define ll long long using namespace std; const double eps=0.0000001;
const int maxn=;
int n,cnt,None,Endless;
bool fre[maxn];
double A[maxn][maxn],x,ans[maxn]; void Gauss()
{
for (R i=;i<=n;++i)
{
int id=i;
for (R j=i+;j<=n;++j)
if(fabs(A[id][i])<fabs(A[j][i])) id=j;
for (R j=;j<=n+;++j)
swap(A[i][j],A[id][j]);
if(fabs(A[i][i])<eps) continue;
x=A[i][i];
for (R j=;j<=n+;++j) A[i][j]/=x;
for (R j=;j<=n;++j)
{
if(i==j) continue;
x=A[j][i];
for (R k=;k<=n+;++k)
A[j][k]-=x*A[i][k];
}
}
} int main()
{
scanf("%d",&n);
for (R i=;i<=n;++i)
for (R j=;j<=n+;++j)
scanf("%lf",&A[i][j]);
Gauss();
for (R i=;i<=n;++i)
{
R j=;
while (fabs(A[i][j])<eps&&j<=n+) j++;
if(j>n+) Endless=;
else if(j==n+) None=;
}
if(None) { printf("-1"); return ; }
if(Endless) { printf(""); return ; }
for (R i=n;i>=;--i)
{
ans[i]=A[i][n+];
for (R j=i-;j>=;--j)
{
A[j][n+]-=ans[i]*A[j][i];
A[j][i]=;
}
}
for (R i=;i<=n;++i)
printf("x%d=%.2lf\n",i,ans[i]);
return ;
}

线性方程组

  

  游走:https://www.lydsy.com/JudgeOnline/problem.php?id=3143

  题意概述:给定一张$n$个点$m$条边的无向简单连通图,从一号点出发,每次从这个点发出的所有边中随机选择一条走过去,到达$n$之后就不再走了,要求给每一条边赋一个独特的,$[1,m]$的权值,使得整条路径上期望的权值总和最小.

  为什么要做这道题呢?$shzr:$我学了高斯消元;$asuldb$:高斯消元有什么用啊,又不能做题;$shzr$:点开"线性方程组";$asuldb$:那有什么用啊,你除了会做模板题还是什么都不会啊,你会用高斯消元做期望吗?$shzr$:...

  也许这题应该放到期望的标签下? 首先根据期望的线性可加性,权值和的期望等于权值的期望和,所以可以对于每一条边分别计算贡献.每一条边的贡献就是经过这一条边的期望次数乘上它的权值;这时贪心策略就很明显了,首先求出每条边的期望经过次数,按照这个次数进行排序,出现次数多的优先赋值小权值即可.那么怎样计算一条边的贡献呢?一条边有两个端点,经过它必然是从某一个端点走过来的,假设我们已经计算出了每个点的期望经过次数记作$E_i$,每个点的度数记为$d_i$,那么对于一条端点为$x,y$的边,它的期望经过次数就是$\frac{E_x}{d_x}+\frac{E_y}{d_y}$.

  如何计算每个点的期望经过次数?枚举每一个与它有边相连的点,它的经过次数就是$E_u=\sum_{v->u}\frac{E_v}{d_v}$,到这里问题就完美解决了。

  然而你可能突然发现这道题是无向图,事情并没有那么简单·_· 每个点之间的相互关系不仅无法进行拓扑排序而且错综复杂,问题进行到这里我们好像陷入了知识盲区。但是仔细整理思路可以发现虽然每个点互相关联,但是却正好组成了一个$N$元一次方程组,$N$个方程,于是可以使用高斯消元.因为走到第$n$个点就不能再走了,这个点不能计算贡献,所以可以直接在矩阵中删去这个点.因为第一个点是开始点,所以除了从别的点到这里的贡献之外还另外有一个$1$,不要忘了.初始化矩阵时要注意:第$x$行的方程是用于计算第$x$个未知数的,第$y$列的系数是对于第$y$个未知数给出去的贡献的,不要写反了.

 for (R i=;i<=m;++i)
{
if(x[i]==n||y[i]==n) continue;
a[ x[i] ][ y[i] ]-=1.0/d[ y[i] ]; //注意这里
a[ y[i] ][ x[i] ]-=1.0/d[ x[i] ]; //
}
  

 # include <cstdio>
# include <iostream>
# include <algorithm>
# define R register int using namespace std; const int maxn=;
int u,v,n,m,h,firs[maxn],d[maxn];
double a[maxn][maxn],ans[maxn];
int x[maxn*maxn],y[maxn*maxn];
double co[maxn*maxn]; double ab (double a) { if(a<) return -a; return a; } int main()
{
scanf("%d%d",&n,&m);
for (R i=;i<=m;++i)
{
scanf("%d%d",&u,&v);
x[++h]=u;
y[h]=v;
d[u]++,d[v]++;
}
for (R i=;i<=m;++i)
{
if(x[i]==n||y[i]==n) continue;
a[ x[i] ][ y[i] ]-=1.0/d[ y[i] ];
a[ y[i] ][ x[i] ]-=1.0/d[ x[i] ];
}
for (R i=;i<n;++i)
a[i][i]=1.0;
a[][n]=1.0;
for (R i=;i<n;++i)
{
int maxx=i;
for (R j=i+;j<n;++j)
if(ab(a[maxx][i])<ab(a[j][i])) maxx=j;
swap(a[i],a[maxx]);
double x;
for (R j=i+;j<n;++j)
{
x=a[j][i]/a[i][i];
for (R k=i;k<=n;++k)
a[j][k]-=a[i][k]*x;
}
}
for (R i=n-;i>=;--i)
{
for (R j=i+;j<n;++j) a[i][n]-=a[i][j]*ans[j];
ans[i]=a[i][n]/a[i][i];
}
for (R i=;i<=m;++i)
{
co[i]+=ans[ x[i] ]/d[ x[i] ];
co[i]+=ans[ y[i] ]/d[ y[i] ];
}
double fans=;
sort(co+,co++m);
for (R i=;i<=m;++i)
fans+=co[i]*(m-i+);
printf("%.3lf",fans);
return ;
}

游走

---shzr

随机推荐

  1. [bug]不包含“AsNoTracking”的定义

    摘要 在使用ef做查询优化的时候我们会用到AsNoTracking方法,但如果不引入命名空间,你就会出现不包含“AsNoTracking”的定义的错误. 解决办法 引入命名空间:System.Data ...

  2. sql语句将查询的结果拼接成字符串

    表样: sqlserver: --方法1 DECLARE @STR VARCHAR(8000) SELECT @STR=ISNULL(@STR+',','')+userID FROM (SELECT  ...

  3. Java基础——工厂模式

    通过学习,一句话概括Java工厂模式的特点——通过建立一个工厂来创建对象,不必关心构造对象实例能不能被实例化啊等诸多细节和复杂过程. 工厂模式呢?就像我们从劳动密集型社会转型到技术密集型社会.打个比方 ...

  4. Retrofit 2.0 使用和原理

    使用教程: http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2015/1016/3588.html retrofit2 与okhttp关系 ...

  5. PHP中按值传递和引用传递的区别

    有次跟朋友讨论对象传值的方式时提到引用传值时,在大脑中搜索五秒钟,果断确定在这两个项目当中并没有用到.今天去问了一下度娘,顺便做了个小测试: 按值传递: 引用传递: 按值传递中原来参数的值在调用其他函 ...

  6. ubuntu 18.04 设置固定ip

    # This file is generated from information provided by # the datasource.  Changes to it will not pers ...

  7. npm install、npm init、npm update、npm uninstall和package.json

    npm install 安装本地包 npm install <package_name>:这个命令将在当前目录中创建node_modules目录(如果尚不存在),并将该软件包下载到该目录. ...

  8. FineReport中如何安装移动端H5插件

    1. HTML5报表插件安装及使用编辑 插件安装 插件网址以及设计器插件安装方法和服务器安装插件的方法可以官网上面搜索,这里就不做详细介绍了. 移动端HTML5报表使用方法 安装好插件后,在浏览器中调 ...

  9. java 性能优化 字符串过滤实战

    转自[http://www.apkbus.com/blog-822717-78335.html]  如有不妥联系删除!! ★一个简单的需求 首先描述一下需求:给定一个 String 对象,过滤掉除了数 ...

  10. 【jdk源码2】Objects源码学习

    在学习上一个类TreeMap的时候,提到了这个类,这个类是jdk1.7新增的,里面有很多实用的方法.就是一个工具类,熟悉以后,如果里面有已经实现的方法,那么就不要再去实现了,省时省力省测试. 一.简单 ...