目录

1. PCA降维

PCA:主成分分析(Principe conponents Analysis)

2. 维度的概念

一般认为时间的一维,而空间的维度,众说纷纭。霍金认为空间是10维的。

3. 为什么要进行降维?

维度灾难:当维度超过一定值的时候,分类器效果呈现明显下降。
PCA旨在找到数据中的主成分,并利用这些主成分表征原始数据,从而达到降维的目的。举一个简单的例子,在三维空间中有一系列数据点,这些点分布在一个过原点的平面上。如果我们用自然坐标系x,y,z三个轴来表示数据,就需要使用三个维度。而实际上,这些点只出现在一个二维平面上,如果我们通过坐标系旋转变换使得数据所在平面与x,y平面重合,那么我们就可以通过x,y两个维度表达原始数据,并且没有任何损失,这样就完成了数据的降维。而x,y两个轴所包含的信息就是我们要找到的主成分。

4. 目标

提取最有价值的信息(基于方差)

5. 降维后的数据的意义?

降维后物理意义变得模糊,但是不影响我们去后续做分类、预测等的结果。

6. PCA推导过程

7. 结论

  • 我们要找最大的方差也就是协方差矩阵最大的特征值;
  • 最佳投影方向就是最大特征值对应的特征向量
  • 次佳投影方向位于最佳投影方向的正交空间中,是第二大特征值对应的特征向量

求解步骤

  1. 对样本数据进行中心化处理
  2. 求协方差矩阵
  3. 对协方差矩阵进行特征值分解,将特征值从到小排列
  4. 取特征值前d大对应的特征向量w1, w2, ..., wd。通过映射关系将n维样本映射到d维空间。

降维后的信息占比定义为:

第四章 PCA降维的更多相关文章

  1. 第十四章:降维:奇异值分解SVD

  2. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  3. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  4. 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据

    相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...

  5. R in action读书笔记(19)第十四章 主成分和因子分析

    第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因 ...

  6. 【机器学习】--主成分分析PCA降维从初识到应用

    一.前述 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. ...

  7. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  8. PCA降维笔记

    PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一 ...

  9. sklearn pca降维

    PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. ...

随机推荐

  1. Codeforces Round #524 (Div. 2) E. Sonya and Matrix Beauty(字符串哈希,马拉车)

    https://codeforces.com/contest/1080/problem/E 题意 有一个n*m(<=250)的字符矩阵,对于每个子矩阵的每一行可以任意交换字符的顺序,使得每一行每 ...

  2. s7-200 PID控位

    只有加热模块,没有风扇,所以温度上冲达到5度左右 TITLE=程序注释 Network // 网络标题 // 初始化 LD SM0. LPS MOVW , VW500 MOVW , VW502 MOV ...

  3. java常用设计模式二:工厂模式

    1.简单工厂模式(静态工厂方法模式) 抽象实例: public interface People { void talk(); } 具体实例: public class Doctor implemen ...

  4. css 兼容ie8 rgba()用法

    今天遇到了一个问题,要在一个页面中设置一个半透明的白色div.这个貌似不是难题,只需要给这个div设置如下的属性即可: background: rgba(255,255,255,.1); 但是要兼容到 ...

  5. Web墨卡托坐标与WGS84坐标互转

    原文地址:http://bbs.esrichina-bj.cn/ESRI/thread-78245-1-1.html 在WebGIS的开发中经常用到的地图投影为Web墨卡托和WGS84,故歌地图,bi ...

  6. python(1)在windows8.1下搭建python27和python36环境

    去Python官网下载需要的Python版本 https://www.python.org/ 我下载的是下面这两个版本: Python 2.7.13 Python 3.6.1 安装Python27时, ...

  7. XCode中常用错误解决

    No such file or directory     解决方法(可以依次尝试,总有一种能最终解决问题):          方法1.退出Xcode,然后从finder里面进入~/Library/ ...

  8. bzoj3262(cdq分治模板)

    裸的cdq,注意去重: #include<iostream> #include<cstdio> #include<cmath> #include<cstrin ...

  9. java通过poi编写excel文件

    public String writeExcel(List<MedicalWhiteList> MedicalWhiteList) { if(MedicalWhiteList == nul ...

  10. Codeforces Round #264 (Div. 2) E. Caisa and Tree 树上操作暴力

    http://codeforces.com/contest/463/problem/E 给出一个总节点数量为n的树,每个节点有权值,进行q次操作,每次操作有两种选项: 1. 询问节点v到root之间的 ...