Description

给你一片森林, 支持两个操作: 查询$x$到$y$的$K$大值,  连接两棵树中的两个点

Solution

对每个节点$x$动态开权值线段树, 表示从$x$到根节点路径上权值出现的次数。

查询时差分即可: $sum[x]+sum[y]-sum[lca]-sum[f[lca]]$

连边时需要启发式合并,将节点数小的接到节点数大的上去, 再遍历小的树, 并更新权值

我刚开始以为testcase是数据组数, TLE我好久,,

Code

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rd read()
using namespace std; const int N = 1e5; int lson[N * ], rson[N * ], sum[N * ], root[N];
int n, m, T, a[N], b[N], f[N][], head[N], tot, dep[N];
int father[N], num[N], cnt, nd_num;
int lastans, Case; struct edge {
int nxt, to;
}e[N << ]; int read() {
int X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar()) if(c == '-') p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} void add(int u, int v) {
e[++tot].to = v;
e[tot].nxt = head[u];
head[u] = tot;
} int find_anc(int x) {
return father[x] == x ? x : father[x] = find_anc(father[x]);
} int find_lca(int x, int y) {
if(dep[x] < dep[y]) swap(x, y);
for(int i = ; ~i; --i) if(dep[f[x][i]] >= dep[y])
x = f[x][i];
if(x == y) return x;
for(int i = ; ~i; --i) if(f[x][i] != f[y][i])
x = f[x][i], y = f[y][i];
return f[x][];
} int fd(int x) {
return lower_bound(b + , b + + cnt, x) - b;
} void ins(int &o, int now, int l, int r, int pos) {
o = ++nd_num;
sum[o] = sum[now] + ;
lson[o] = lson[now];
rson[o] = rson[now];
if(l == r) return;
int mid = (l + r) >> ;
if(pos <= mid) ins(lson[o], lson[now], l, mid, pos);
else ins(rson[o], rson[now], mid + , r, pos);
} int query(int x, int y, int lca, int flca, int l, int r, int k) {
if(l == r) return l;
int mid = (l + r) >> , tmp;
if((tmp = sum[lson[x]] + sum[lson[y]] - sum[lson[lca]] - sum[lson[flca]]) >= k) return query(lson[x], lson[y], lson[lca], lson[flca], l, mid, k);
else return query(rson[x], rson[y], rson[lca], rson[flca], mid + , r, k - tmp);
} void dfs(int u) {
dep[u] = dep[f[u][]] + ;
for(int i = ; i <= ; ++i)
f[u][i] = f[f[u][i - ]][i - ];
ins(root[u], root[f[u][]], , cnt, fd(a[u]));
for(int i = head[u]; i; i = e[i].nxt) {
int nt = e[i].to;
if(nt == f[u][]) continue;
f[nt][] = u;
dfs(nt);
}
} int work() {
lastans = ; tot = ;
nd_num = ;
/* memset(root, 0, sizeof(root));
memset(lson, 0, sizeof(lson));
memset(rson, 0, sizeof(rson));
memset(head, 0, sizeof(head));
memset(dep, 0, sizeof(dep));*/
n = rd; m = rd; T = rd;
for(int i = ; i <= n; ++i) b[i] = a[i] = rd;
sort(b + , b + + n);
cnt = unique(b + , b + + n) - b - ;
for(int i = ; i <= n; ++i) father[i] = i, num[i] = ;
for(int i = ; i <= m; ++i) {
int u = rd, v = rd;
int x = find_anc(u), y = find_anc(v);
father[y] = x;
num[x] += num[y];
add(u, v); add(v, u);
}
for(int i = ; i <= n; ++i) if(!dep[i]) dfs(i);
for(int i = ; i <= T; ++i) {
char c = getchar();
while(c != 'Q' && c != 'L') c = getchar();
int u = rd ^ lastans, v = rd ^ lastans;
if(c == 'Q') {
int lca = find_lca(u, v), flca = f[lca][], k = rd ^ lastans;
lastans = query(root[u], root[v], root[lca], root[flca], , cnt, k);
if(lastans > cnt || lastans < ) return printf("F**k,WA\n"), ;
lastans = b[lastans];
printf("%d\n", lastans);
}
else {
int x = find_anc(u), y = find_anc(v);
if(num[x] < num[y]) {
swap(x, y); swap(u, v);
}
father[y] = x;
num[x] += num[y];
f[v][] = u;
add(v, u); add(u, v);
dfs(v);
}
}
return ;
} int main()
{
Case = rd;
work();
}

BZOJ 3123 [SDOI2013] 森林 - 启发式合并 主席树的更多相关文章

  1. 【BZOJ3123】[SDOI2013] 森林(启发式合并主席树)

    点此看题面 大致题意: 给你一片森林,有两种操作:询问两点之间的第\(k\)小点权和在两棵树之间连一条边. 前置技能:树上主席树 做这道题目,我们首先要会树上主席树. 关于树上主席树,这有一道很好的例 ...

  2. bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)

    Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...

  3. BZOJ 2733 [HNOI2012]永无乡 - 启发式合并主席树

    Description 1: 查询一个集合内的K大值 2: 合并两个集合 Solution 启发式合并主席树板子 Code #include<cstdio> #include<cst ...

  4. BZOJ 3123: [Sdoi2013]森林 [主席树启发式合并]

    3123: [Sdoi2013]森林 题意:一个森林,加边,询问路径上k小值.保证任意时刻是森林 LCT没法搞,树上kth肯定要用树上主席树 加边?启发式合并就好了,小的树dfs重建一下 注意 测试点 ...

  5. Bzoj 3123: [Sdoi2013]森林(主席树+启发式合并)

    3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当前 ...

  6. BZOJ3123: [Sdoi2013]森林(启发式合并&主席树)

    3123: [Sdoi2013]森林 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4813  Solved: 1420[Submit][Status ...

  7. bzoj 3123: [Sdoi2013]森林(45分暴力)

    3123: [Sdoi2013]森林 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4184  Solved: 1235[Submit][Status ...

  8. bzoj 3123 [Sdoi2013]森林(主席树,lca,启发式合并)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  9. bzoj 3123 [Sdoi2013]森林(主席树+启发式合并+LCA)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

随机推荐

  1. 头部尾部始终处于两端(适用于pc端和移动端)

    此代码展示的效果阐述:(随着屏幕宽高度的变化而变化) 当页面内容小于屏幕高度时,头尾分别处在屏幕顶部和屏幕底部: 当页面出现滚动条时,头尾分别处于屏幕顶部和内容底部: <style> *{ ...

  2. 1.1、CDH 搭建Hadoop在安装之前(配置网络名称)

    重要: CDH需要IPv4.不支持IPv6.提示:粘合时,请使用bond0 IP地址,因为它代表所有聚合链接. 按如下方式配置群集中的每个主机,以确保所有成员可以相互通信: 将主机名设置为唯一名称(不 ...

  3. Bootstrap Popover

    [Bootstrap Popover] 1.设置一个popover需要添加以下设置: 1)data-toggle="popover" 2)title="Example p ...

  4. substring 比较(c#和Java)

    Java中 string str = "123456"; str .substring(5); 结果:6 Substring(A)表示从原字符串的指定索引号A开始截取直到原字符串的 ...

  5. cdnbest如何查看站点操作日志(同步日志)

     1. 在区域列表点同步日志 2. 点击进入后,可以查看对哪个站点进行了操作,操作时间,ip,id都有记录 3. 想知道详细操作了什么内容把鼠标指向操作类型,就会弹出操作的信息

  6. JMeter学习(二十一)关联(转载)

    转载自 http://www.cnblogs.com/yangxia-test 话说LoadRunner有的一些功能,比如:参数化.检查点.集合点.关联,Jmeter也都有这些功能,只是功能可能稍弱一 ...

  7. Python Flask学习

    开了一个新坑..一直以来对web的前端后端了解比较模糊,所以打算学一个后端框架,写个小博客什么的增长一下姿势水平. 初学嘛,选个相对轻量级一点的,就决定学习flask啦.

  8. java swing示例

    该范例主要是JFrame(框架)和Jpanel(画板),在Jpanel容器上添加控件,然后再把Jpanel放进JFrame的容器里面. FrameDemo.java import java.awt.D ...

  9. jenkin、SVN、archery集成openLDAP

    jenkins: 1.下载.安装插件 LDAP .Matrix Authorization Strategy 2. 系统管理 —> 全局安全配置 点击 启用安全,并且选择 LDAP 认证,这里有 ...

  10. 牛客网练习赛44-B(快速幂+模拟)

    题目链接:https://ac.nowcoder.com/acm/contest/548/B 题意:计算m/n小数点后k1位到k2位,1≤m≤n≤109,1<=k1<=k2<=109 ...