HDU 6264 (深搜,数论)
题意
求\(\sum_{d|n}\phi (d) \times {n\over d}\),其中\(\phi(n) = n\prod_{p|n}({1-{1\over p}})\)
分析
将\(\phi(d)\) 分解式子代入可知:\(\sum_{d|n}(n\times \prod_{p|d}(1-{1\over p}))\)
\(d\) 是 \(n\) 的因子,枚举 \(d\) 的质因子的所有可能的组成情况共\(2^c\)中。 其中 c 为 n 的不同质因子个数(即题目中输入的 n )。
对于每种组成情况,例如\(d\) 的质因子为\(p_1,p_2,\cdots p_m\) ,我们枚举的是所有 p 的组成情况,而 每个 p 的指数都会影响 d 的实际大小。到这里,了解过如何计算一个数的因子个数的朋友一定知道如何解决该题目了。我们只需要计算满足这个质因子组成的 d 的个数就可以计算了
变量说明
- ab[i] : 即 \(a[i] ^ {b[i]}\)
- ab2[i] : 即 \(a[i] ^ {b[i] - 1}* (a[i]-1)\)
#include <bits/stdc++.h>
using namespace std;
const int mod = 998244353;
int T,a[22],b[22],ab[22],ab2[22],n;
int ksm(int a,int b){
int res = 1;
for(;b;b>>=1){
if(b&1)res = 1ll * res * a % mod;
a = 1ll * a * a % mod;
}
return res;
}
int ans = 0;
// now 为 大小 ,num 为 个数
void dfs(int x,int now,int num){
if(x > n){
ans = (ans + 1ll * now * num % mod) % mod;
return ;
}
//如果不选第 x 个质因子
dfs(x+1,1ll * ab[x] * now % mod, num);
//如果选择第 x 个质因子
dfs(x+1,1ll * ab2[x] * now % mod,1ll * num * b[x] % mod);
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
ab[i] = ksm(a[i],b[i]);
ab2[i] = ksm(a[i],b[i] - 1);
ab2[i] = 1ll * ab2[i] * (a[i] - 1) % mod;
}
ans = 0;
dfs(1,1,1);
printf("%d\n",ans);
}
return 0;
}
特别提醒:用状压来表示所有选择情况的朋友可能会得到TLE的惊喜
HDU 6264 (深搜,数论)的更多相关文章
- HDU 3720 深搜 枚举
DES:从23个队员中选出4—4—2—1共4种11人来组成比赛队伍.给出每个人对每个职位的能力值.给出m组人在一起时会产生的附加效果.问你整场比赛人员的能力和最高是多少. 用深搜暴力枚举每种类型的人选 ...
- hdu 1181 深搜
中文题 深搜 许久没写鸟,卡在输入问题上... #include <iostream> #include <string> using namespace std; bool ...
- hdu 1010 深搜+剪枝
深度搜索 剪枝 还不是很理解 贴上众神代码 //http://blog.csdn.net/vsooda/article/details/7884772#include<iostream> ...
- hdu 1518 深搜
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...
- hdu 1716 深搜dfs
#include<stdio.h> #include<stdlib.h> #include<string.h> #define N 5 int f[N]; int ...
- hdu 5648 DZY Loves Math 组合数+深搜(子集法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5648 题意:给定n,m(1<= n,m <= 15,000),求Σgcd(i|j,i&am ...
- 深搜基础题目 杭电 HDU 1241
HDU 1241 是深搜算法的入门题目,递归实现. 原题目传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1241 代码仅供参考,c++实现: #incl ...
- hdu 4740【模拟+深搜】.cpp
题意: 给出老虎的起始点.方向和驴的起始点.方向.. 规定老虎和驴都不会走自己走过的方格,并且当没路走的时候,驴会右转,老虎会左转.. 当转了一次还没路走就会停下来.. 问他们有没有可能在某一格相遇. ...
- (深搜)Oil Deposits -- hdu -- 1241
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1241 Time Limit: 2000/1000 MS (Java/Others) Memory ...
- hdu 1518 Square(深搜+剪枝)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1518 题目大意:根据题目所给的几条边,来判断是否能构成正方形,一个很好的深搜应用,注意剪枝,以防超时! ...
随机推荐
- ABP vNext 审计日志获取真实客户端IP
背景 在使用ABP vNext时,当需要记录审计日志时,我们按照https://docs.abp.io/zh-Hans/abp/latest/Audit-Logging配置即可开箱即用,然而在实际生产 ...
- ios iphone 崩溃字符记录
如题,近日iphone被爆出有一串字符可引发系统错误 (بٍٍٍٍََُُُِّّّْرٍٍٍٍََُُِِّّّْآٍٍٍَُّ بٍٍٍٍََُُُِّّّْرٍٍٍٍََُُِِّّّْآٍٍٍ ...
- 利用PHP递归 获取所有的上级栏目
/** * 获取所有的上级栏目 * @param $category_id * @param array $array * @return array * @author 宁佳兵 <meilij ...
- LinkedList 的 API 与数据结构
LinkedList 是 List 接口和 Deque 接口的双向链表实现,它所有的 API 调用都是基于对双向链表的操作.本文将介绍 LinkedList 的数据结构和分析 API 中的算法. 数据 ...
- redis之集群二:哨兵
回顾 上一篇介绍了Redis的主从集群模式,这个集群模式配置很简单,只需要在Slave的节点上进行配置,Master主节点的配置不需要做任何更改.但是,我们发现这种集群模式当主节点宕机,主从无法自动切 ...
- eCATT使用前的配置
如果想在SAP中使用eCATT,必须做一下相关的配置才行,下面简单介绍这几步:1.SM30,输入表T000,然后点击维护,或者是进入事物SCC4,进入对应的clint属性编辑视图下,将CATT and ...
- python--or 和 and 表达式
or表达式: 两边为一真一假,返回真: 两边都为假,返回右边: 两边都为真,返回左边: and表达式: 两边为一真一假,返回假: 两边都为假,返回左边: 两边都为真,返回右边:
- 如何安装快速 Docker 和 Docker-Compose 服务
最近由于个人在大家基于 Docker 的.企业级的CI/CD 环境,所以要安装 Docker 和 Docker-Compose ,这也算是一个学习过程,就把整个过程记录下来,便于以后查询. 测试环境 ...
- Redis持久化之RDB和AOF
Redis是一个键值对数据库服务器,由于Redis是内存数据库,那么有很多内存的特点,例如掉电易失,或者进程退出,服务器中的数据也将消失不见,所以需要一种方法将数据从内存中写到磁盘,这一过程称之为数据 ...
- 为了更好的多线程性能,在对象创建或者更新时,若数据大于2047字节则 Python 的 GIL 会被释放。 执行计算密集型任务如压缩或哈希时释放 GIL
hashlib - Secure hashes and message digests - Python 3.8.3 documentation https://docs.python.org/3.8 ...