题目链接

题意

求\(\sum_{d|n}\phi (d) \times {n\over d}\),其中\(\phi(n) = n\prod_{p|n}({1-{1\over p}})\)

分析

将\(\phi(d)\) 分解式子代入可知:\(\sum_{d|n}(n\times \prod_{p|d}(1-{1\over p}))\)

\(d\) 是 \(n\) 的因子,枚举 \(d\) 的质因子的所有可能的组成情况共\(2^c\)中。 其中 c 为 n 的不同质因子个数(即题目中输入的 n )。

对于每种组成情况,例如\(d\) 的质因子为\(p_1,p_2,\cdots p_m\) ,我们枚举的是所有 p 的组成情况,而 每个 p 的指数都会影响 d 的实际大小。到这里,了解过如何计算一个数的因子个数的朋友一定知道如何解决该题目了。我们只需要计算满足这个质因子组成的 d 的个数就可以计算了

变量说明

  • ab[i] : 即 \(a[i] ^ {b[i]}\)
  • ab2[i] : 即 \(a[i] ^ {b[i] - 1}* (a[i]-1)\)
#include <bits/stdc++.h>
using namespace std;
const int mod = 998244353;
int T,a[22],b[22],ab[22],ab2[22],n;
int ksm(int a,int b){
int res = 1;
for(;b;b>>=1){
if(b&1)res = 1ll * res * a % mod;
a = 1ll * a * a % mod;
}
return res;
}
int ans = 0;
// now 为 大小 ,num 为 个数
void dfs(int x,int now,int num){
if(x > n){
ans = (ans + 1ll * now * num % mod) % mod;
return ;
}
//如果不选第 x 个质因子
dfs(x+1,1ll * ab[x] * now % mod, num);
//如果选择第 x 个质因子
dfs(x+1,1ll * ab2[x] * now % mod,1ll * num * b[x] % mod);
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
ab[i] = ksm(a[i],b[i]);
ab2[i] = ksm(a[i],b[i] - 1);
ab2[i] = 1ll * ab2[i] * (a[i] - 1) % mod;
}
ans = 0;
dfs(1,1,1);
printf("%d\n",ans);
}
return 0;
}

特别提醒:用状压来表示所有选择情况的朋友可能会得到TLE的惊喜

HDU 6264 (深搜,数论)的更多相关文章

  1. HDU 3720 深搜 枚举

    DES:从23个队员中选出4—4—2—1共4种11人来组成比赛队伍.给出每个人对每个职位的能力值.给出m组人在一起时会产生的附加效果.问你整场比赛人员的能力和最高是多少. 用深搜暴力枚举每种类型的人选 ...

  2. hdu 1181 深搜

    中文题 深搜 许久没写鸟,卡在输入问题上... #include <iostream> #include <string> using namespace std; bool ...

  3. hdu 1010 深搜+剪枝

    深度搜索 剪枝 还不是很理解 贴上众神代码 //http://blog.csdn.net/vsooda/article/details/7884772#include<iostream> ...

  4. hdu 1518 深搜

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  5. hdu 1716 深搜dfs

    #include<stdio.h> #include<stdlib.h> #include<string.h> #define N 5 int f[N]; int ...

  6. hdu 5648 DZY Loves Math 组合数+深搜(子集法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5648 题意:给定n,m(1<= n,m <= 15,000),求Σgcd(i|j,i&am ...

  7. 深搜基础题目 杭电 HDU 1241

    HDU 1241 是深搜算法的入门题目,递归实现. 原题目传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1241 代码仅供参考,c++实现: #incl ...

  8. hdu 4740【模拟+深搜】.cpp

    题意: 给出老虎的起始点.方向和驴的起始点.方向.. 规定老虎和驴都不会走自己走过的方格,并且当没路走的时候,驴会右转,老虎会左转.. 当转了一次还没路走就会停下来.. 问他们有没有可能在某一格相遇. ...

  9. (深搜)Oil Deposits -- hdu -- 1241

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1241 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  10. hdu 1518 Square(深搜+剪枝)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1518 题目大意:根据题目所给的几条边,来判断是否能构成正方形,一个很好的深搜应用,注意剪枝,以防超时! ...

随机推荐

  1. Modbus 仿真测试工具 Mod_Rssim 详细图文教程

    Mod_RSsim是一款轻量级的Modbus从机模拟器,它可以模拟ModBusTCP和ModBusRTU的从机,能够同时模拟254个被控站,软件使用简单方便,可以满足一般的主机调试. 官方网站:www ...

  2. 【排序】题解_P1093奖学金

    题目描述 奖学金 某小学最近得到了一笔赞助,打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金.期末,每个学生都有3门课的成绩:语文.数学.英语.先按总分从高到低排序,如果两个同学总分相同,再按语文 ...

  3. 【Java基础】Java8 新特性

    Java8 新特性 Lambda 表达式 Lambda 是一个匿名函数,我们可以把 Lambda 表达式理解为是一段可以传递的代码(将代码像数据一样进行传递).使用它可以写出更简洁.更灵活的代码. L ...

  4. LeetCode235 二叉搜索树的最近公共祖先

    给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p.q 的祖 ...

  5. ctfhub技能树—web前置技能—http协议—Cookie

    打开靶机环境 查看显示内容 根据提示,需要admin登录才能得到flag 题目介绍为Cookie欺骗.认证.伪造 介绍一下cookie和session 一.cookie: 在网站中,http请求是无状 ...

  6. Python编程小技巧(一)

    在使用Tkinter编写代码的时候,有时候会忘记某个组件的参数是什么或者忘记某个参数怎么拼写的,此时可以通过如下方式查询组件的参数列表,以按钮组件为例: 1 # -*- coding:utf-8 -* ...

  7. 15V转5V转3.3V转3V芯片,DC-DC和LDO

    15V电压是属于一般电压,降压转成5V电压,3.3V电压和3V电压,适用于这个电压的DC-DC很多,LDO也是有可以选择的.LDO芯片如PW6206,PW8600等.DC-DC芯片如:PW2162,P ...

  8. Wi-Fi IoT套件连PCF8563实现电子钟功能

    首先跟同样新入手单片机开发的小伙伴分享一点I2C通信的知识.我估计大部分入手开发板的小伙伴都有一定程序开发的能力,但是底层开发可能是新接触,我看有的小伙伴配置开发环境都有障碍,其实并不是多复杂,只是首 ...

  9. 自动化接口差异测试-diffy 回归测试 charles rewrite 请求

    https://mp.weixin.qq.com/s/vIxbtQtRRqgYCrDy7XTcrA 自动化接口差异测试-diffy Boris 搜狗测试 2018-08-30   自动化接口差异测试- ...

  10. 【算法】数位 dp

    时隔多日,我终于再次开始写博客了!! 上午听了数位 dp,感觉没听懂,于是在网上进行一番愉 ♂ 快 ♀ 的学习后,写篇博来加深一下印象~~ 前置的没用的知识 数位 不同计数单位,按照一定顺序排列,它们 ...