(题面来自洛谷)

题目描述

n个集合 m个操作

操作:

1 a b 合并a,b所在集合

2 k 回到第k次操作之后的状态(查询算作操作)

3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

\(n \le 10^5, m \le 2\times 10^5\)

考虑不带路径压缩、使用启发式合并的并查集,每一次合并实际上只是改变了两个点的信息。

1. v的父亲置为u

2. \(size(u) += size(v)\)

那么将数组fa、size改为可持久化数组维护即可。

复杂度分析:根据启发式合并性质,每次Find操作会执行\(logn\)次循环,循环中为可持久化数组查询,故Find操作的单次复杂度为\(O(log^2n)\)。

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
const int maxn(200010);
int n, m;
struct Seg_tree {
#define mid ((l + r) >> 1)
#define lc(nd) seg[nd].lc
#define rc(nd) seg[nd].rc struct node {
int dat, lc, rc;
/* node(int a = 0, int b = 0, int c = 0):
dat(a), lc(b), rc(c) {}*/
// node(): dat(0), lc(0), rc(0) {}
} seg[maxn * 40];
int root[maxn], tot;
void modify(int& nd, int pre, int l, int r, int pos, int x) {
nd = ++tot;
seg[nd] = seg[pre];
if (l == r) {
seg[nd] = (node) {x, 0, 0};
return;
}
if (pos <= mid) modify(lc(nd), lc(pre), l, mid, pos, x);
else modify(rc(nd), rc(pre), mid+1, r, pos, x);
}
void build(int &nd, int l, int r, int val) {
nd = ++tot;
if (l == r) {
seg[nd] = (node) {val, 0, 0};
return;
}
build(lc(nd), l, mid, val);
build(rc(nd), mid+1, r, val);
return;
}
int query(int nd, int l, int r, int pos) {
if (!nd) return 0;
if (l == r) return seg[nd].dat;
if (pos <= mid) return query(lc(nd), l, mid, pos);
return query(rc(nd), mid+1, r, pos);
}
} Dsu, Siz;
int Find(int x, int ver) {
int tmp;
while (tmp = Dsu.query(Dsu.root[ver], 1, n, x)) x = tmp;
return x;
}
inline void merge(int u, int v, int ver) {
u = Find(u, ver), v = Find(v, ver);
if (u == v) return;
int a, b;
if ((a = Siz.query(Siz.root[ver], 1, n, u)) < (b = Siz.query(Siz.root[ver], 1, n, v))) swap(u, v);
Dsu.modify(Dsu.root[ver], Dsu.root[ver-1], 1, n, v, u);
Siz.modify(Siz.root[ver], Siz.root[ver-1], 1, n, u, a + b);
return;
}
int main() {
// freopen("test.in", "r", stdin);
// freopen("test.ans", "w", stdout);
scanf("%d %d", &n, &m);
Siz.build(Siz.root[0], 1, n, 1);
int op, u, v;
for (int i = 1; i <= m; ++i) {
scanf("%d %d", &op, &u);
if (op == 1) {
Siz.root[i] = Siz.root[i-1];
Dsu.root[i] = Dsu.root[i-1];
scanf("%d", &v);
merge(u, v, i);
} else if (op == 2) {
Siz.root[i] = Siz.root[u];
Dsu.root[i] = Dsu.root[u];
} else {
Siz.root[i] = Siz.root[i-1];
Dsu.root[i] = Dsu.root[i-1];
scanf("%d", &v);
putchar(Find(u, i) == Find(v, i) ? '1' : '0');
putchar('\n');
}
}
return 0;
}

【模板】【P3402】可持久化并查集的更多相关文章

  1. bzoj3673 & bzoj3674 & 洛谷P3402 可持久化并查集

    题目:bzoj3673:https://www.lydsy.com/JudgeOnline/problem.php?id=3673 bzoj3674:https://www.lydsy.com/Jud ...

  2. 「luogu3402」【模板】可持久化并查集

    「luogu3402」[模板]可持久化并查集 传送门 我们可以用一个可持久化数组来存每个节点的父亲. 单点信息更新和查询就用主席树多花 一个 \(\log\) 的代价来搞. 然后考虑如何合并两个点. ...

  3. 洛谷P3402 【模板】可持久化并查集 [主席树,并查集]

    题目传送门 可持久化并查集 n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 ...

  4. 【洛谷 P3402】 【模板】可持久化并查集

    题目链接 可持久化并查集,就是用可持久化线段树维护每个版本每个节点的父亲,这样显然是不能路径压缩的,否则我们需要恢复太多状态. 但是这并不影响我们启发式合并,于是,每次把深度小的连通块向深度大的上并就 ...

  5. 洛谷P3402 可持久化并查集

    n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 说是可持久化并查集,实际上是 ...

  6. 洛谷P3402 【模板】可持久化并查集(可持久化线段树,线段树)

    orz TPLY 巨佬,题解讲的挺好的. 这里重点梳理一下思路,做一个小小的补充吧. 写可持久化线段树,叶子节点维护每个位置的fa,利用每次只更新一个节点的特性,每次插入\(logN\)个节点,这一部 ...

  7. P3402 可持久化并查集

    P3402 通过主席树维护不同版本的并查集,注意要采用按秩合并的方式,路径压缩可能会爆. 1 #include <bits/stdc++.h> 2 using namespace std; ...

  8. P3402 【模板】可持久化并查集

    传送门 //minamoto #include<bits/stdc++.h> using namespace std; #define getc() (p1==p2&&(p ...

  9. 洛谷P3402 【模板】可持久化并查集

    一定注意每一次都要是 $root[cur]=root[cur-1]$,不然进行合并时如果 $a,b$ 在同一集合中就会使 $root[cur]=0$. Code: #include <cstdi ...

  10. Luogu3402【模板】可持久化并查集 (主席树)

    用\(depth\)按秩合并,不能直接启发,数组开40倍左右 #include <iostream> #include <cstdio> #include <cstrin ...

随机推荐

  1. mshadow入门指南

    mshadow是一个基于表达式模板实现的张量库,在MXNet框架中被广泛使用.这篇文章简单介绍了mshadow的基本用法和特性,文章主要翻译自mshadow/guide/README. 张量数据结构 ...

  2. 「MCOI-03」村国题解

    第二篇题解! 可能是退役之前的最后一篇题解了 (好像总共都只写了两篇) 不说了,讲题: 题面 题意: 有T个数据 有一颗树(保证所有的的节点都是相连的),有n个节点,每个节点都有相应的权值与序号,现在 ...

  3. Charles使用part2——代理设置

    一.charles代理原理: 如果本地开了代理:  二.设置代理 1.设置代理端口: proxy->proxy setting 打开代理设置界面,代理端口默认是 8888,可以使用默认也可以自己 ...

  4. 【快速因数分解】Pollard's Rho 算法

    Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \( ...

  5. 浅谈Linux桌面(发行版及桌面环境)

    Part I: 前言 笔者2018年接触Linux(当时还是学校机房的Ubuntu 14.04 LTS),至今已经有4个年头了. 折腾了至少十几个Linux发行版,包括但不限于: ubuntu.Deb ...

  6. 【Java】阿里巴巴开发规范手册

    Java 开发手册 一. 编程规约 (一) 命名风格 [强制]代码中的命名均不能以下划线或美元符号开始,也不能以下划线或美元符号结束. 反例: _name, $name, __name [强制]代码中 ...

  7. 排序算法—快速排序(Quick Sort)

    快速排序(Quick Sort) 快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序. ...

  8. 9.mysql性能优化-慢查询分析、优化索引和配置

    目录 一.优化概述 二.查询与索引优化分析 1性能瓶颈定位 Show命令 慢查询日志 explain分析查询 profiling分析查询 2索引及查询优化 三.配置优化 max_connections ...

  9. 炸了!一口气问了我18个JVM问题!

    前言 GC 对于Java 来说重要性不言而喻,不论是平日里对 JVM 的调优还是面试中的无情轰炸. 这篇文章我会以一问一答的方式来展开有关 GC 的内容. 不过在此之前强烈建议先看这篇文章深度揭秘垃圾 ...

  10. Java多线程技术:实现多用户服务端Socket通信

    目录 前言回顾 一.多用户服务器 二.使用线程池实现服务端多线程 1.单线程版本 2.多线程版本 三.多用户与服务端通信演示 四.多用户服务器完整代码 最后 前言回顾 在上一篇<Java多线程实 ...