• 算法,问题之解法也

  • 算法好坏的衡量标准:时间和空间,单位是对数、一次、二次、三次等

  • 算法中处理的数据,输入方式都是左闭又开,类型就迭代器, 如:[first, last)

  • STL中提供了很多算法,我们只研究感兴趣的几种

copy函数

  • 拷贝[first, last)到[result, reslut+(last - first))

  • 总体考虑:对象能够直接在内存级别拷贝,还是需要单独拷贝

  • 设计技巧:重载和特化

  • 如下图所示:

template<class InputIterator, class OutputIterator>
inline OutputIterator copy(InputIterator first, InputIterator last, OutputIterator reslut)
{
return __copy_dispatch<InputIterator, OutputIterator>()(first, last, result);
} // 特化
inline char* copy(const char* first, const char* last, char* result)
{
memmove(result, first, last - first);
return result + (last - first);
} // 特化
inline wchar_t* copy(const wchar_t* first, const wchar_t* last, wchar_t* result)
{
memmove(result, first, sizeof(wchar_t) * (last - first));
return result + (last - first);
}
template<class InputIterator, class OutputIterator>
struct __copy_dispatch
{
OutputIterator operator()(InputIterator first, InputIterator last, OutputIterator reslut)
{
return __copy(first, last, result, iterator_category(first));
}
} // 特化
template <class T>
struct __copy_dispatch<T*, T*>
{
T* operator()(T* first, T* last, T* result)
{
typedef typename __type_traits<T>::has_trival_assignment_operator t;
return __copy_t(first, last, result, t());
}
} // 特化
template <class T>
struct __copy_dispatch<const T*, T*>
{
T* operator()(const T* first, const T* last, T* result)
{
typedef typename __type_traits<T>::has_trival_assignment_operator t;
return __copy_t(first, last, result, t());
}
}
template<class InputIterator, class OutputIterator>
inline OutputIterator __copy(InputIterator first, InputIterator last, OutputIterator reslut, input_iterator_tag)
{
// 以判断迭代器是否相同为标准,速度慢
for(; first != last; ++result, ++first)
{
*result = *first;
}
return result;
} template<class InputIterator, class OutputIterator>
inline OutputIterator __copy(InputIterator first, InputIterator last, OutputIterator reslut, random_access_iterator_tag)
{
// 完全是为了复用
return __copy_d(first, last, result, distance_type(first));
} template<class InputIterator, class OutputIterator, class Distance>
inline OutputIterator __copy_d(InputIterator first, InputIterator last, OutputIterator reslut, Distance*)
{
// 以判断n值是否大于0为标准,速度快
for(Distance n = last - first; n > ; --n, ++result, ++first)
{
*result = *first;
}
return result;
}
templat <class T>
inline T* __copy_t(const T* first, const T* last, T* result, __true_type)
{
// 直接复制内存
memmove(result, first, sizeof(T) * (last - first));
return result + (last - first);
} templat <class T>
inline T* __copy_t(const T* first, const T* last, T* result, __true_type)
{
// 每个数据单独复制
return __copy_d(first, last, result, (ptrdiff_t*));
}

copy_back函数

  • copy_back和copy的设计方式基本相同,问题的区别是拷贝的方向不同,copy是从first开始到last拷贝,copy_back是从last开始到first拷贝

  • copy_back的拷贝过程:*(result - 1) = *(last - 1), *(result - 2) = *(last - 2)...

find函数

  • 在[first, last)中找出第一个匹配的数据,返回指向该数据的Iterator

template <class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last, const T& value)
{
while(first != last && *first != *last) ++first;
return first;
}

sort函数

  • 插入排序

    • 优点:对于小型,基本有序的数据进行排序,效率最高

    • 缺点:对于大型数据,完全无序,效率非常低

  • 堆排序

    • 优点:对大型数据表现良好,所需的额外存储空间是和数据等同的大小

    • 缺点:对于小型数据不合适

    • 复杂度:平均O(NlogN),最坏O(N^2)

  • 快速排序

    • 优点:对于大型数据表现良好

    • 缺点:递归调用耗资源,不适用于小型数据

    • 复杂度:平均O(NlogN),最坏O(NlogN)

  • STL中的排序算法

    • 如果数据个数大于16,使用快速排序,如果快速排序递归的层次超过一定阈值,使用堆排序

    • 如果数据小于16,直接使用插入排序

    • 原因:

      • 小数据直接使用插入排序,效率高

      • 大型数据一开始就使用堆排序,复杂度是O(NlogN),一开始使用快速排序效率低于O(NlogN),如果一直使用快速排序,算法的复杂度会降低到最坏O(N^2),所以先快速排序再堆排序

  • 插入排序算法源码

template <class RandomAccessIterator>
void __insert_sort(RandomAccessIterator first, RandomAccessIterator last)
{
if(first == last)
{
return;
} for(RandomAccessIterator i = first + ; i != last,; i++)
{
__linear_insert(first, i, value_type(first));
}
} template <class RandomAccessIterator, class T>
inline void __linear_insert(RandomAccessIterator first, RandomAccessIterator last, T*)
{
T value = *last;
if(value < first)
{
// 需要插入的值比头部的值还小,直接整体拷贝
copy_back(first, last, last+);
*first = value;
}
else
{
// 从后向前,依次比较拷贝
__unguarded_linear_insert(last, value);
}
} template <class RandomAccessIterator, class T>
void __unguarded_linear_insert(RandomAccessIterator last, T value)
{
--next;
while(value < *next)
{
*last = *next;
last = next;
--next;
}
*last = value;
}
  • 快速排序算法源码
// 取三值中点
template <class T>
inline const T& _median(const T& a, const T& b, const T& c)
{
if(a < b)
{
if(b < c)
{
return b;
}
else if(a < c)
{
return c;
}
else
{
return a;
}
}
else if(a < c)
{
return a;
}
else if(b < c)
{
return c;
}
else
{
return b;
}
}
template <class RandomAccessIterator, class T>
RandomAccessIterator __unguarded_partition(RandomAccessIterator first, RandomAccessIterator last, T pivot)
{
while(true)
{
while(*first < pivot)
{
++first;
} --last;
while(pivot < *last)
{
--last;
} if(!(first < last))
{
return first;
} iter_swap(first, last);
++first;
}
}
  • 堆排序算法源码

    • 见序列式容器中的堆章节

  • STL中的排序算法源码

template <class RandomAccessIterator>
inline void sort(RandomAccessIterator first, RandomAccessIterator last)
{
if(first != last)
{
// 快速排序和堆排序
__introsort_loop(first, last, value_type(first), __lg(last - first) * );
// 插入排序
__final_insertion_sort(first, last)
}
} // 找出2^k < n的最大k值
templat <class Size>
inline Size __lg(Size n)
{
Size k;
for(k = ; n > ; n >> )
{
++k;
}
return k;
} template <class RandomAccessIterator, class T, class Size>
void __introsort_loop(RandomAccessIterator first, RandomAccessIterator last, T*, Size depth_limit)
{
while(last - first > )
{
if(depth_limit == )
{
partial_sort(first, last, last); // 堆排序
return;
} --depth_limit;
// 取中值
RandomAccessIterator cut = __unguarded_partition(first, last,
T(_median(
*first,
*(first + (last - first) / ),
*(last - )
)));
// 右半段递归sort
__introsort_loop(cut, last, value_type(first), depth_limit); // 左半段在while中递归sort
last = cut;
}
} template <class RandomAccessIterator>
void __final_insertion_sort(RandomAccessIterator first, RandomAccessIterator last)
{
if(last - first > )
{
// 以下写法感觉有点冗余。先排序前16个数据,然后将后需要数据依次插入排序
__insertion_sort(first, first + );
__unguarded_insertion_sort(first + , last);
}
else
{
// 小于16,直接插入排序
__insert_sort(first, last);
}
} template <class RandomAccessIterator>
inline void __unguarded_insertion_sort(RandomAccessIterator first, RandomAccessIterator last)
{
__unguarded_insertion_sort_aux(first, last, value_type(first));
} template <class RandomAccessIterator, class T>
void __unguarded_insertion_sort_aux(RandomAccessIterator first, RandomAccessIterator last, T*)
{
for(RandomAccessIterator i = first; i != last; ++i)
{
__unguarded_linear_insert(i, T(*i));
}
}

STL源码剖析:算法的更多相关文章

  1. STL源码剖析——算法#1 内存处理基本工具

    我们在学习序列式容器时,我们经常会遇到这三个函数:uninitialized_copy.uninitialized_fill.uninitialized_fill_n.在那时我们只是仅仅知道这些函数的 ...

  2. STL源码剖析(算法)

    STL中算法是基于迭代器来实现的. 有了容器中迭代器的实现(对operator*.operator++等的重载),STL中大部分算法实现就显得很简单了. 先看一例关于find算法的实现: templa ...

  3. STL"源码"剖析-重点知识总结

    STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点略多 :) 1.STL概述 STL提供六大组件,彼此可以组合 ...

  4. 【转载】STL"源码"剖析-重点知识总结

    原文:STL"源码"剖析-重点知识总结 STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点 ...

  5. (原创滴~)STL源码剖析读书总结1——GP和内存管理

    读完侯捷先生的<STL源码剖析>,感觉真如他本人所说的"庖丁解牛,恢恢乎游刃有余",STL底层的实现一览无余,给人一种自己的C++水平又提升了一个level的幻觉,呵呵 ...

  6. STL源码剖析 迭代器(iterator)概念与编程技法(三)

    1 STL迭代器原理 1.1  迭代器(iterator)是一中检查容器内元素并遍历元素的数据类型,STL设计的精髓在于,把容器(Containers)和算法(Algorithms)分开,而迭代器(i ...

  7. STL"源码"剖析

    STL"源码"剖析-重点知识总结   STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点略 ...

  8. 《STL源码剖析》相关面试题总结

    原文链接:http://www.cnblogs.com/raichen/p/5817158.html 一.STL简介 STL提供六大组件,彼此可以组合套用: 容器容器就是各种数据结构,我就不多说,看看 ...

  9. STL源码剖析之序列式容器

    最近由于找工作需要,准备深入学习一下STL源码,我看的是侯捷所著的<STL源码剖析>.之所以看这本书主要是由于我过去曾经接触过一些台湾人,我一直觉得台湾人非常不错(这里不涉及任何政治,仅限 ...

  10. 《STL源码剖析》学习之traits编程

    侯捷老师在<STL源码剖析>中说到:了解traits编程技术,就像获得“芝麻开门”的口诀一样,从此得以一窥STL源码的奥秘.如此一说,其重要性就不言而喻了.      之前已经介绍过迭代器 ...

随机推荐

  1. 安装mysql报错:遇到缺少vcruntime140_1.dll文件

    把vcruntime140_1.dll文件放到System32 ,和System64就行 文件地址为:C:\Windows\System32 直接百度下载放进去就行

  2. cookie和session及token

    cookie,session傻傻分不清楚? 做了这么多年测试,还是分不清什么是cookie,什么是session?很正常,很多初级开发工程师可能到现在都搞不清什么是session,cookie相对来说 ...

  3. Python HTTP Server (Simples)

    Simple HTTP Server 适合临时开发调试web 使用, 直接当前项目下使用python命令快速起一个http server python2 python -m SimpleHTTPSer ...

  4. EntityFramework Core 迁移忽略主外键关系

    前言 本文来源于一位公众号童鞋私信我的问题,在我若加思索后给出了其中一种方案,在此之前我也思考过这个问题,借此机会我稍微看了下,目前能够想到的也只是本文所述方案. 为何要忽略主外键关系 我们不仅疑惑为 ...

  5. Linux虚拟网络:Docker网络知识之基础篇

    我们在工作中应用了docker容器化技术,服务的部署.维护和扩展都方便了很多.然而,近期在私有化部署过程中,由于不同服务器环境的复杂多变,常常遇到网络方面的问题,现象为容器服务运行正常,但宿主机.容器 ...

  6. C#由转换二进制所引起的思考,了解下?

    前言 最近遇到很有意思转换二进制的问题,有部分童鞋俨然已了解,可能也有一部分童鞋没碰到过也就不知情,这里我们来深入学习下转换二进制所带来的问题. 二进制转换问题 假设现在我们有一个int类型的数据,它 ...

  7. For setting NODE_ENV you can use any of these methods.

    method 1: set NODE_ENV for all node apps Windows: set NODE_ENV=production Linux or other Unix based ...

  8. 使用Fiddler模拟Post请求

    做了一个动态的GIF来做演示,应该更加直观些. (完)

  9. Electron 初识-搭建一个简易桌面应用

    Electron ​ 快速入门 简介 Electron 可以让你使用纯 JavaScript 调用丰富的原生 APIs 来创造桌面应用.你可以把它看作是专注于桌面应用而不是 web 服务器的,io.j ...

  10. 【学习随手记】kubeadm 查看创建集群需要的镜像版本,附拉取镜像脚本

    查看创建集群需要的镜像版本 kubeadm config images list [--kubernetes-version <version>] 国内拉取镜像脚本 一般而言,直接使用ku ...