1.csv导入

1.1 csv导入

.read_csv()函数
pandas.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=',', delimiter=None, header='infer', 
names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None,
converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None,
na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False,
infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False,
chunksize=None, compression='infer', thousands=None, decimal: str = '.', lineterminator=None, quotechar='"', quoting=0,
doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True,
delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

常用参数:

filepath_or_buffer : various

  • 文件路径 (a strpathlib.Path, or py._path.local.LocalPath), URL (including http, ftp, and S3 locations), 或者具有 read() 方法的任何对象 (such as an open file or StringIO).

sep : str, 默认 read_csv()分隔符为','read_table()方法,分隔符为 \t

  • 分隔符的使用. 如果分隔符为None,虽然C不能解析,但python解析引擎可解析,这意味着python将被使用,通过内置的sniffer tool自动检测分隔符, csv.Sniffer. 除此之外,字符长度超过1并且不同于 's+' 的将被视为正则表达式,并且将强制使用python解析引擎。需要注意的是,正则表达式易于忽略引用数据(主要注意转义字符的使用) 例如: '\\r\\t'.

delimiter : str, default None

  • sep的替代参数.

delim_whitespace : boolean, default False

  • 指定是否将空格 (e.g. ' ' or '\t')当作delimiter。 等价于设置 sep='\s+'. 如果这个选项被设置为 True,就不要给 delimiter 传参了.

列、索引、名称

header : int or list of ints, default 'infer'

  • 当选择默认值或header=0时,将首行设为列名。如果列名被传入明确值就令header=None。注意,当header=0时,即使列名被传参也会被覆盖。

  • 标题可以是指定列上的MultiIndex的行位置的整数列表,例如 [0,1,3]。在列名指定时,若某列未被指定,读取时将跳过该列 (例如 在下面的例子中第二列将被跳过).注意,如果 skip_blank_lines=True,此参数将忽略空行和注释行, 因此 header=0 表示第一行数据而非文件的第一行.

names : array-like, default None

  • 列名列表的使用. 如果文件不包含列名,那么应该设置header=None。 列名列表中不允许有重复值.

index_col : int, str, sequence of int / str, or False, default None

  • DataFrame的行索引列表, 既可以是字符串名称也可以是列索引. 如果传入一个字符串序列或者整数序列,那么一定要使用多级索引(MultiIndex).

  • 注意: 当index_col=False ,pandas不再使用首列作为索引。例如, 当你的文件是一个每行末尾都带有一个分割符的格式错误的文件时.

usecols : list-like or callable, default None

  • 返回列名列表的子集. 如果该参数为列表形式, 那么所有元素应全为位置(即文档列中的整数索引)或者 全为相应列的列名字符串(这些列名字符串为names参数给出的或者文档的header行内容).例如,一个有效的列表型参数 usecols 将会是是 [0, 1, 2] 或者 ['foo', 'bar', 'baz'].

  • 元素顺序可忽略,因此 usecols=[0, 1]等价于 [1, 0]。如果想实例化一个自定义列顺序的DataFrame,请使用pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']] ,这样列的顺序为 ['foo', 'bar'] 。如果设置pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']] 那么列的顺序为['bar', 'foo'] 。

encoding : str, default None

  • Encoding to use for UTF when reading/writing (e.g. 'utf-8')

使用 read_csv 导入 CSV 的文件:

import pandas as pd

df = pd.read_csv(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.csv")
print(df) # 输出结果
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215 0 118 0 23/11/2019 23:00:10
1 juejin 177 0 -2 1 23/11/2019 23:00:03
2 csdn 1652 69 0 24 23/11/2019 23:00:02
3 cnblog 650 3 191 0 22/11/2019 23:00:15
4 juejin 272 3 -23 1 22/11/2019 23:00:02
.. ... ... ... ... ... ...
403 juejin 212 0 -1 2 20/2/2020 23:00:02
404 csdn 1602 1 0 1 20/2/2020 23:00:01
405 cnblog 19 0 41 0 21/2/2020 23:00:05
406 juejin 125 1 -4 0 21/2/2020 23:00:02
407 csdn 1475 8 0 3 21/2/2020 23:00:02 [408 rows x 6 columns]

可以看到,和上面的 Excel 导入的数据保持一致,只是后面的时间日期类型格式化有点区别。

其余的操作和上面介绍的 Excel 是一样的,这里就不一一列举了,有一个需要注意的点是,编码格式的指定,这时我们需要设置 encoding 参数,如果不做设置,那么默认的指定格式是 utf-8 的,因为常用的格式除了 utf-8 还会有 gbk 、 gb2312 等等。

import pandas as pd

# 指定编码格式
df = pd.read_csv(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.csv", encoding='utf-8')
print(df) # 输出结果
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215 0 118 0 23/11/2019 23:00:10
1 juejin 177 0 -2 1 23/11/2019 23:00:03
2 csdn 1652 69 0 24 23/11/2019 23:00:02
3 cnblog 650 3 191 0 22/11/2019 23:00:15
4 juejin 272 3 -23 1 22/11/2019 23:00:02
.. ... ... ... ... ... ...
403 juejin 212 0 -1 2 20/2/2020 23:00:02
404 csdn 1602 1 0 1 20/2/2020 23:00:01
405 cnblog 19 0 41 0 21/2/2020 23:00:05
406 juejin 125 1 -4 0 21/2/2020 23:00:02
407 csdn 1475 8 0 3 21/2/2020 23:00:02 [408 rows x 6 columns]

这里的编码格式是 utf-8 ,所以这里对编码格式的设置是 encoding='utf-8'

1.2 CSV 导出

在导出 CSV 的时候,要使用到的方法是 to_csv() ,和上面导出 Excel 实际上相差并不大,一样是要先设置文件路径,接下来可以设置索引、导出的列、分隔符号、编码格式、缺失值等等。

还是先来看下 to_csv() 语法

DataFrame.to_csv(self, path_or_buf: Union[str, pathlib.Path, IO[~AnyStr], NoneType] = None, 
sep: str = ',', na_rep: str = '', float_format: Union[str, NoneType] = None,
columns: Union[Sequence[Union[Hashable, NoneType]], NoneType] = None, header: Union[bool, List[str]] = True, index: bool = True,
index_label: Union[bool, str, Sequence[Union[Hashable, NoneType]], NoneType] = None, mode: str = 'w', encoding: Union[str, NoneType] = None,
compression: Union[str, Mapping[str, str], NoneType] = 'infer', quoting: Union[int, NoneType] = None, quotechar: str = '"',
line_terminator: Union[str, NoneType] = None, chunksize: Union[int, NoneType] = None, date_format: Union[str, NoneType] = None, doublequote: bool = True,
escapechar: Union[str, NoneType] = None, decimal: Union[str, NoneType] = '.') → Union[str, NoneType]

可以看到的是 to_csv() 比较 to_excel() 有着更多的参数,实际上,我们一些常用的参数并不多,小编下面接着给出一个比较复杂的导出示例:

df.to_csv(path_or_buf=r'D:\Development\Projects\demo.csv', # 设置导出路径
index=False, # 设置索引不显示
sep=',', # 设置分隔符号
na_rep='', # 缺失值处理
columns=['编号', '姓名'], # 设置要导出的列
encoding='utf-8', # 设置编码格式
)

数据可视化基础专题(三):Pandas基础(二) csv导入与导出的更多相关文章

  1. 数据可视化实例(三): 散点图(pandas,matplotlib,numpy)

    关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和 ...

  2. Mysql基础(三):MySQL基础数据类型、完整性约束、sql_mode模式

    目录 2.MySQL基础数据类型.完整性约束.sql_mode模式 1. MySQL常用数据类型 2. 完整性约束 3. MySQL的sql_mode模式说明以及设置 2.MySQL基础数据类型.完整 ...

  3. 数据可视化之PowerQuery篇(十二)客户购买频次分布

    https://zhuanlan.zhihu.com/p/100070260 商业数据分析通常都可以简化为对数据进行筛选.分组.汇总的过程,本文通过一个实例来看看PowerBI是如何快速完成整个过程的 ...

  4. 数据可视化之powerBI入门(十二)PowerBI中最重要的函数:CALCULATE

    https://zhuanlan.zhihu.com/p/64382849 介绍DAX的时候,特别强调过一个重要的函数:CALCULATE,本文就来揭秘这个函数的计算原理以及它是如何影响上下文的. C ...

  5. 数据可视化之powerBI技巧(十二)学会这几个度量值,轻松获取前N名

    数据中的明细项一般都有很多,可是我们关注的往往只是前几名,所以在报表中只展示关注的部分,就十分常用. 有了上篇(这几个示例,帮你深入理解RANKX排名)关于排名的铺垫,仅显示前N名就简单多了. 依然以 ...

  6. 数据可视化之DAX篇(十二)掌握时间智能函数,同比环比各种比,轻松搞定!

    https://zhuanlan.zhihu.com/p/55841964 时间可以说是数据分析中最常用的独立变量,工作中也常常会遇到对时间数据的对比分析.假设要计算上年同期的销量,在PowerBI中 ...

  7. 表格类型数据,Excel csv导入,导出操作

    import pandas # 创建表格格式# ad = pandas.DataFrame({"a": range(1, 10), "b": range(10, ...

  8. 前端er必须掌握的数据可视化技术

    又是一月结束,打工人准时准点的汇报工作如期和大家见面啦.提到汇报,必不可少的一部分就是数据的汇总.分析. 作为一名合格的社会人,我们每天都在工作.生活.学习中和数字打交道.小到量化的工作内容,大到具体 ...

  9. python grib气象数据可视化

    基于Python的Grib数据可视化           利用Python语言实现Grib数据可视化主要依靠三个库——pygrib.numpy和matplotlib.pygrib是欧洲中期天气预报中心 ...

随机推荐

  1. 解决Celery 在Windows中搭建和使用的版本

    官网:http://docs.celeryproject.org/en/latest/faq.html#does-celery-support-windows 描述如下:表示Celery 4.0版本以 ...

  2. 十几万条数据的表中,基于帝国cms 。自己亲身体验三种批量更新数据的方法,每一种的速度是什么样的

    需求是 上传Excel 读取里面的数据.根据Excel中某一个字段,与数据表中的一个字段的唯一性.然后把 Excel表中数据和数据库表中数据一次更改.本次测试一次更新31条数据. 本次测试基于帝国cm ...

  3. <WP8开发学习笔记>获取手机的常用型号(如Lumia920,而非RM-822)

    之前WP7时代可以用API获得WP手机的型号如lumia510,但是到了WP8后用APi只能获得硬件版本号了如RM-822,这种型号可以让我们更详细的了解具体的硬件版本,比如国行和港行,设备版本号不一 ...

  4. .net core3.1 abp动态菜单和动态权限(动态菜单实现和动态权限添加) (三)

    我们来创建动态菜单吧 首先,先对动态菜单的概念.操作.流程进行约束:1.Host和各个Tenant有自己的自定义菜单2.Host和各个Tenant的权限与自定义菜单相关联2.Tenant有一套默认的菜 ...

  5. Golang简单入门教程——函数进阶篇

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是golang专题的第八篇,我们来聊聊golang当中的函数. 我们在之前的时候已经介绍过了函数的基本用法,知道了怎么样设计或者是定义一 ...

  6. 淘宝官网css初始化

    body, h1, h2, h3, h4, h5, h6, hr, p, blockquote, dl, dt, dd, ul, ol, li, pre, form, fieldset, legend ...

  7. PIP设置镜像源

    PIP设置镜像源 pip安装Python包时候,默认是国外的下载源,速度太慢,本文介绍几种设置pip国内镜像源的方法 镜像源 阿里云 http://mirrors.aliyun.com/pypi/si ...

  8. 手把手教你使用Python生成图灵智能小伙伴,实现工作助手/闲聊功能

    /1 前言/ 在家闲着,做个小项目,基于Python,实现一个语聊小机器人,分享给大家.项目整体比较简单,官方文档介绍的非常详细,可快速上手. /2 目标/ 将图灵机器人放到桌面,实现工作助手/陪聊功 ...

  9. 慕课网--java权限管理系统

    http://coding.imooc.com/class/evaluation/149.html

  10. Ubuntu k80深度学习环境搭建

    英伟达驱动安装 英伟达驱动下载:https://www.nvidia.cn/Download/driverResults.aspx/135493/cn/ 由于是驱动的冲突,那么自然是要杀掉和显卡结合不 ...