Link

\(\text{Solution:}\)

讲实话这题有点烦,不知道为啥改了下\(\text{dfs}\)就过了……原版本\(dfs\)好像没啥错啊……

其实对于子树问题,我们求出原来树的\(dfs\)序列,则可以将它转化为一个序列问题。注意题目中说的是有根树,以\(1\)为根。

那么,我们一遍\(dfs\)求出序列后,把它插到询问里面,即更新为原序列。

注意,我们对应\(dfs\)序并不是原来的点,所以还需要一个数组\(rk\)维护映射\(point\to dfn\).

那么,对于维护,一种最直接的树状数组维护前缀和,复杂度套一个\(Log\).

另一种,我们考虑一下如何\(O(1)\)来维护,维护一个计数数组和\(sum\)数组。

每次更新一个数,如果是加,那么它原来次数的\(sum\)数组不用修改,在加完的\(sum\)数组处修改即可。因为这样是一路加过去的,手动模拟一下小样例更好理解。

对于删掉一个数,显然次数\(-1\),那么对应地它当前给\(sum\)数组的贡献就不再奏效,于是先把它的贡献清除掉,再将次数\(-1\).

我们通过以上做到了\(O(1)\)维护前缀和。

那么我们就可以莫队了。将询问离线,并分块排序,复杂度\(O(n\sqrt{n}).\)

玄学\(dfs\)真不知道怎么搞的,调了半天……

#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e5+10;
int dfn[MAXN],n,m,tot,head[MAXN<<1];
int cnt[MAXN],ans[MAXN],dfstime,rk[MAXN];
int bl[MAXN],S,sum[MAXN],c[MAXN],siz[MAXN];
pair<int,int>Rem[MAXN];
struct edge{
int nxt,to;
}e[MAXN<<1];
inline void add(int x,int y){e[++tot].to=y;e[tot].nxt=head[x];head[x]=tot;}
void dfs(int x,int pre){
rk[dfn[x]=++dfstime]=x;
Rem[x].first=dfstime;siz[x]=1;
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(pre==j)continue;
dfs(j,x);siz[x]+=siz[j];
}
Rem[x].second=dfstime;
}
struct Q{
int l,r,k,id;
bool operator<(const Q&B)const{
if(bl[l]==bl[B.l])return r<B.r;
return bl[l]<bl[B.l];
}
}q[MAXN];
inline void inr(int x){++cnt[c[rk[x]]],++sum[cnt[c[rk[x]]]];}
inline void del(int x){--sum[cnt[c[rk[x]]]],--cnt[c[rk[x]]];} int main(){
scanf("%d%d",&n,&m);S=sqrt(n);
for(int i=1;i<=n;++i)scanf("%d",&c[i]),bl[i]=(i-1)/S+1;
for(int i=1;i<n;++i){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
dfs(1,0);
for(int i=1,v;i<=m;++i){
scanf("%d%d",&v,&q[i].k);q[i].id=i;
q[i].l=dfn[v];q[i].r=dfn[v]+siz[v]-1;
}
sort(q+1,q+m+1);int l=1,r=0;
for(int i=1;i<=m;++i){
int ql=q[i].l,qr=q[i].r;
while(l<ql)del(l++);
while(l>ql)inr(--l);
while(r<qr)inr(++r);
while(r>qr)del(r--);
ans[q[i].id]=sum[q[i].k];
}
for(int i=1;i<=m;++i)printf("%d\n",ans[i]);
return 0;
}

【题解】CF375D Tree and Queries的更多相关文章

  1. CF375D Tree and Queries 题解

    感觉CF的题目名都好朴素的样子 你谷链接 首先这题显然是个dsu on tree 但是我不会. 其次这题显然是个莫队.这我会啊! 然后会发现好像不是很对劲.因为每次询问都有一个k,貌似和传统的莫队数颜 ...

  2. 【题解】 Luogu CF375D Tree and Queries

    原题传送门 这道题要用树链剖分,我博客里有对树链剖分的详细介绍 我博客中对莫队的详细介绍 莫队好题 我一上来想写线段树,随后觉得不好写并弃坑 我们可以看见没有修改操作,钦定莫队 但这是在树上,所以不能 ...

  3. CF375D Tree and Queries

    题意翻译 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. 感谢@elijahqi 提供的翻译 ...

  4. CF375D Tree and Queries(dsu on tree)

    思路 dsu on tree的板子,可惜人傻把 for(int i=fir[u];i;i=nxt[i]) 打成 for(int i=fir[u];i<=n;i++) 调了两个小时 这题要求维护& ...

  5. 「CF375D Tree and Queries」

    题目 \(dsu\ on\ tree\)的板子题了 \(dsu\ on\ tree\)本质上一种优秀通过轻重链剖分优化到\(O(nlogn)\)的暴力 一般用来解决没有修改的允许离线的子树查询问题 首 ...

  6. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  7. [Codeforces Round #221 (Div. 1)][D. Tree and Queries]

    题目链接:375D - Tree and Queries 题目大意:给你一个有n个点的树,每个点都有其对应的颜色,给出m次询问(v,k),问v的子树中有多少种颜色至少出现k次 题解:先对所有的询问进行 ...

  8. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

  9. Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)

    题目链接  Tree and Queries 题目大意  给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...

随机推荐

  1. iOS 报错: linker command failed with exit code 1 (use -v to see invocation) 原因

    在iOS开发中,很多人会遇到这样的报错 linker command failed with exit code 1 (use -v to see invocation) 可能的原因如下: 1.引用出 ...

  2. Unity Job System

    https://docs.unity3d.com/Manual/JobSystem.html https://github.com/Unity-Technologies/EntityComponent ...

  3. Pandas | Dataframe的merge操作,像数据库一样尽情join

    今天是pandas数据处理第8篇文章,我们一起来聊聊dataframe的合并. 常见的数据合并操作主要有两种,第一种是我们新生成了新的特征,想要把它和旧的特征合并在一起.第二种是我们新获取了一份数据集 ...

  4. windows下TOMCAT对内存使用的设置

    1.打开TOMCAT目录 E:\备份\apache-tomcat-8.5.50-windows-x64\apache-tomcat-8.5.50\bin catalina.bat----------- ...

  5. Pinpoint 一款强大的APM工具

    背景 程序的监控一直是程序员最头痛的事情之一,现网程序有问题怎么办?看进程看端口 top/free/df 三件套?网络抓包?看日志?所以为了满足这些初级需求很多公司都做了主机监控,进程端口监听等功能, ...

  6. Vue中父组件使用子组件的emit事件,获取emit事件传出的值并添加父组件额外的参数进行操作

    需求是这样的,需要输入这样一个列表的数据,可以手动添加行,每一行中客户编号跟客户姓名是自动关联的,就是说选取了客户姓名之后,客户编号是自动填充的,客户姓名是一个独立的组件,每一个下拉项都是一个大的对象 ...

  7. padding-top:100%解决高度塌陷问题

    <div class="img_box"> <img src="http://sms-shop.oss-cnbeijing.aliyuncs.com/$ ...

  8. AP、AC、无线路由器

    起因 AP.AC.无线路由器 一直都傻傻的分不清,今天就好好的研究一下他们之间到底有什么联系和区别~ AP 什么是AP? 无线AP(Access Point):即无线接入点,它用于无线网络的无线交换机 ...

  9. 将虚拟机IP与主机IP设置在同一网段的方法

    一.查看主机的网卡名称.IP地址.子网掩码 二.设置VMware Workstation软件 打开虚拟网络编辑器 弹出对话框,选择"更改设置"按钮. 进入虚拟网络编辑器 单选项选择 ...

  10. [LeetCode]72. 编辑距离(DP)

    题目 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 1 ...