Link

\(\text{Solution:}\)

讲实话这题有点烦,不知道为啥改了下\(\text{dfs}\)就过了……原版本\(dfs\)好像没啥错啊……

其实对于子树问题,我们求出原来树的\(dfs\)序列,则可以将它转化为一个序列问题。注意题目中说的是有根树,以\(1\)为根。

那么,我们一遍\(dfs\)求出序列后,把它插到询问里面,即更新为原序列。

注意,我们对应\(dfs\)序并不是原来的点,所以还需要一个数组\(rk\)维护映射\(point\to dfn\).

那么,对于维护,一种最直接的树状数组维护前缀和,复杂度套一个\(Log\).

另一种,我们考虑一下如何\(O(1)\)来维护,维护一个计数数组和\(sum\)数组。

每次更新一个数,如果是加,那么它原来次数的\(sum\)数组不用修改,在加完的\(sum\)数组处修改即可。因为这样是一路加过去的,手动模拟一下小样例更好理解。

对于删掉一个数,显然次数\(-1\),那么对应地它当前给\(sum\)数组的贡献就不再奏效,于是先把它的贡献清除掉,再将次数\(-1\).

我们通过以上做到了\(O(1)\)维护前缀和。

那么我们就可以莫队了。将询问离线,并分块排序,复杂度\(O(n\sqrt{n}).\)

玄学\(dfs\)真不知道怎么搞的,调了半天……

#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e5+10;
int dfn[MAXN],n,m,tot,head[MAXN<<1];
int cnt[MAXN],ans[MAXN],dfstime,rk[MAXN];
int bl[MAXN],S,sum[MAXN],c[MAXN],siz[MAXN];
pair<int,int>Rem[MAXN];
struct edge{
int nxt,to;
}e[MAXN<<1];
inline void add(int x,int y){e[++tot].to=y;e[tot].nxt=head[x];head[x]=tot;}
void dfs(int x,int pre){
rk[dfn[x]=++dfstime]=x;
Rem[x].first=dfstime;siz[x]=1;
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(pre==j)continue;
dfs(j,x);siz[x]+=siz[j];
}
Rem[x].second=dfstime;
}
struct Q{
int l,r,k,id;
bool operator<(const Q&B)const{
if(bl[l]==bl[B.l])return r<B.r;
return bl[l]<bl[B.l];
}
}q[MAXN];
inline void inr(int x){++cnt[c[rk[x]]],++sum[cnt[c[rk[x]]]];}
inline void del(int x){--sum[cnt[c[rk[x]]]],--cnt[c[rk[x]]];} int main(){
scanf("%d%d",&n,&m);S=sqrt(n);
for(int i=1;i<=n;++i)scanf("%d",&c[i]),bl[i]=(i-1)/S+1;
for(int i=1;i<n;++i){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
dfs(1,0);
for(int i=1,v;i<=m;++i){
scanf("%d%d",&v,&q[i].k);q[i].id=i;
q[i].l=dfn[v];q[i].r=dfn[v]+siz[v]-1;
}
sort(q+1,q+m+1);int l=1,r=0;
for(int i=1;i<=m;++i){
int ql=q[i].l,qr=q[i].r;
while(l<ql)del(l++);
while(l>ql)inr(--l);
while(r<qr)inr(++r);
while(r>qr)del(r--);
ans[q[i].id]=sum[q[i].k];
}
for(int i=1;i<=m;++i)printf("%d\n",ans[i]);
return 0;
}

【题解】CF375D Tree and Queries的更多相关文章

  1. CF375D Tree and Queries 题解

    感觉CF的题目名都好朴素的样子 你谷链接 首先这题显然是个dsu on tree 但是我不会. 其次这题显然是个莫队.这我会啊! 然后会发现好像不是很对劲.因为每次询问都有一个k,貌似和传统的莫队数颜 ...

  2. 【题解】 Luogu CF375D Tree and Queries

    原题传送门 这道题要用树链剖分,我博客里有对树链剖分的详细介绍 我博客中对莫队的详细介绍 莫队好题 我一上来想写线段树,随后觉得不好写并弃坑 我们可以看见没有修改操作,钦定莫队 但这是在树上,所以不能 ...

  3. CF375D Tree and Queries

    题意翻译 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. 感谢@elijahqi 提供的翻译 ...

  4. CF375D Tree and Queries(dsu on tree)

    思路 dsu on tree的板子,可惜人傻把 for(int i=fir[u];i;i=nxt[i]) 打成 for(int i=fir[u];i<=n;i++) 调了两个小时 这题要求维护& ...

  5. 「CF375D Tree and Queries」

    题目 \(dsu\ on\ tree\)的板子题了 \(dsu\ on\ tree\)本质上一种优秀通过轻重链剖分优化到\(O(nlogn)\)的暴力 一般用来解决没有修改的允许离线的子树查询问题 首 ...

  6. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  7. [Codeforces Round #221 (Div. 1)][D. Tree and Queries]

    题目链接:375D - Tree and Queries 题目大意:给你一个有n个点的树,每个点都有其对应的颜色,给出m次询问(v,k),问v的子树中有多少种颜色至少出现k次 题解:先对所有的询问进行 ...

  8. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

  9. Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)

    题目链接  Tree and Queries 题目大意  给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...

随机推荐

  1. 重要bug记录

    导唱功能:需求点分析:本地已下载歌曲播放,判断是否有音频原唱伴奏版权,无版权按钮显示“导唱”,有版权显示“播原唱”.程序实现逻辑: 1.下载歌曲时调用一个歌曲信息接口,返回歌曲的一些属性信息,其中包括 ...

  2. 条件竞争(race condition)

    条件竞争漏洞是一种服务器端的漏洞,由于服务器端在处理不同用户的请求时是并发进行的,因此,如果并发处理不当或相关操作逻辑顺序设计的不合理时,将会导致此类问题的发生. 参考了一些资料,发现一个比较能说明问 ...

  3. Go语言 | goroutine不只有基础的用法,还有这些你不知道的操作

    今天是golang专题第15篇文章,我们来继续聊聊channel的使用. 在我们的上篇文章当中我们简单介绍了golang当中channel的使用方法,channel是golang当中一个非常重要的设计 ...

  4. 保存vuex状态刷新不消失

    写在App.vue中,所有页面共享此方法 export default { name: "app", components: {}, created() { // 页面每次刷新加载 ...

  5. leetcode题目,个人见解1

    给定一个由整数组成的非空数组所表示的非负整数,在该数的基础上加一. 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字. 你可以假设除了整数 0 之外,这个整数不会以零开头. 示例 1: 输入 ...

  6. Kubernetes-16:一文详解ServiceAccount及RBAC权限控制

    一.ServiceAccount 1.ServiceAccount 介绍 首先Kubernetes中账户区分为:User Accounts(用户账户) 和 Service Accounts(服务账户) ...

  7. latex pdf 转 eps

    latex pdf 转 eps 方法一,使用命令行,缺点是得到的文件有点大 pdf 转 ps, pdf2ps input.pdf output.ps ps 转 eps, ps2eps input.ps ...

  8. Git 实用基础(配置,建库,提交,推送 GitHub)

    Git 实用基础(配置,建库,提交,推送 GitHub) SVN ? Git ? 目前市面上主流的版本控制系统就是 SVN 和 Git . 两者的区别简单通俗地说就是,版本数据是否有在本地. 如果觉得 ...

  9. 一些免费的API

    Github 接口 Github 为我们提供了一些免费的 API 接口,利用这些接口我们可以开发一些工具. 接口文档地址为 https://docs.github.com/en/rest 下面是一个例 ...

  10. LVM最佳实践

    LVM逻辑卷管理器 LVM概念 在Linux中,逻辑卷管理器(Logical Volume Manager, LVM)是为Linux内核提供逻辑卷管理的设备映射器目标.大多数现代Linux发行版都能够 ...