F - Maximal Intersection --------暴力求解题
You are given n
segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.
The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 0
in case the intersection is an empty set.
For example, the intersection of segments [1;5]
and [3;10] is [3;5] (length 2), the intersection of segments [1;5] and [5;7] is [5;5] (length 0) and the intersection of segments [1;5] and [6;6] is an empty set (length 0
).
Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)
segments has the maximal possible length.
Input
The first line contains a single integer n
(2≤n≤3⋅105
) — the number of segments in the sequence.
Each of the next n
lines contains two integers li and ri (0≤li≤ri≤109) — the description of the i
-th segment.
Output
Print a single integer — the maximal possible length of the intersection of (n−1)
remaining segments after you remove exactly one segment from the sequence.
Examples
4
1 3
2 6
0 4
3 3
1
5
2 6
1 3
0 4
1 20
0 4
2
3
4 5
1 2
9 20
0
2
3 10
1 5
7
Note
In the first example you should remove the segment [3;3]
, the intersection will become [2;3] (length 1). Removing any other segment will result in the intersection [3;3] (length 0
).
In the second example you should remove the segment [1;3]
or segment [2;6], the intersection will become [2;4] (length 2) or [1;3] (length 2), respectively. Removing any other segment will result in the intersection [2;3] (length 1
).
In the third example the intersection will become an empty set no matter the segment you remove.
In the fourth example you will get the intersection [3;10]
(length 7) if you remove the segment [1;5] or the intersection [1;5] (length 4) if you remove the segment [3;10].
题意:给出一些区间(或者点),求去除一个区间后,所共有的最大范围
题解:根据样例与自己画得出规律:所给区间最大值为右侧r的最小值减去左侧l的最大值。然后从第一个点循环求出最大的ans。如果去除点包含lmax,那么l取第二大的值,r同理
ac代码
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
struct k {
long long ll;
long long rr;
}fan[310000];
int l[310000],r[310000];
int main()
{
int n,l1,r1,al,ar;
int ans=0;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>fan[i].ll;
cin>>fan[i].rr;
l[i]=fan[i].ll;
r[i]=fan[i].rr;
}
sort(l,l+n);
sort(r,r+n);
for(int i=0;i<n;i++)
{
if(fan[i].ll==l[n-1]) al=l[n-2];
else al=l[n-1];
if(fan[i].rr==r[0]) ar=r[1];
else ar=r[0];
ans=max(ans,ar-al);
}
cout<<ans<<endl;
return 0;
}
F - Maximal Intersection --------暴力求解题的更多相关文章
- CF1029C Maximal Intersection 暴力枚举
Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input standar ...
- 2n皇后问题-------递归 暴力求解题与分布讨论题
问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行.同一列或同一条对角线上,任意的两个白皇后都不在同一行.同一列或同一 ...
- Codeforces Round #506 (Div. 3) C. Maximal Intersection
C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...
- Blue Jeans---poj3080(kmp+暴力求子串)
题目链接:http://poj.org/problem?id=3080 题意就是求n个长度为60的串中求最长公共子序列(长度>=3):如果有多个输出字典序最小的: 我们可以暴力求出第一个串的所有 ...
- Java【基础学习】之暴力求素数【用数组返回】
Java[基础学习]之暴力求素数[用数组返回] */ import java.util.*; public class Main{ public static void main(String[] a ...
- hdu 4291(矩阵+暴力求循环节)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4291 思路:首先保留求出循环节,然后就是矩阵求幂了. #include<iostream> ...
- UVA725 Division (暴力求解法入门)
uva 725 Division Write a program that finds and displays all pairs of 5-digit numbers that between t ...
- 2019牛客多校第二场F Partition problem 暴力+复杂度计算+优化
Partition problem 暴力+复杂度计算+优化 题意 2n个人分成两组.给出一个矩阵,如果ab两个在同一个阵营,那么就可以得到值\(v_{ab}\)求如何分可以取得最大值 (n<14 ...
- poj 2187 Beauty Contest (凸包暴力求最远点对+旋转卡壳)
链接:http://poj.org/problem?id=2187 Description Bessie, Farmer John's prize cow, has just won first pl ...
随机推荐
- 小师妹学JVM之:JIT中的PrintCompilation
目录 简介 PrintCompilation 分析PrintCompilation的结果 总结 简介 上篇文章我们讲到了JIT中的LogCompilation,将编译的日志都收集起来,存到日志文件里面 ...
- 原生PHP连接MySQL数据库
<?php //1.连接数据库 // mysqli_connect('主机名','用户名','密码'); $link = @mysqli_connect('localhost','usernam ...
- JavaWEB实现qq邮箱发送验证码——qq1692700664
// 随机验证码public String achieveCode() { String[] beforeShuffle = new String[] { "2", "3 ...
- 基础的markdown用法
首先推荐一款在线的markdown编辑器:Editor.md 一篇博客里面就是文字与图片的集合.markdown其实就是编辑文字,插入图片的工具.对于大多数人来说,学习几个标签就可以了. 标题 #** ...
- Azure Monitor(二)Log Analytics
一,引言( 前情回顾) Azure Monitor 包括 Log Analytics 和 Application Insights,其提供的高级工具适用于收集和分析遥测数据,以便最大程度地提高云和本地 ...
- HTML5(五)Geolocation
HTML5 Geolocation 定位用户的位置 HTML5 Geolocation API 用于获得用户的地理位置. 鉴于该特性可能侵犯用户的隐私,除非用户同意,否则用户位置信息是不可用的. 注意 ...
- Blazor带我重玩前端(二)
概览 Blazor目前有两种托管模式,一种是Server-Side模式,一种是WebAssembly模式.官方首先支持的是Service-Side模式,使用WebAssembly模式,需要更新到最新版 ...
- 洛谷 P1640 SCOI2010 连续攻击游戏 并查集
题目描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性.并且每种装备 ...
- Monkey and Banana 题解(动态规划)
Monkey and Banana 简单的动态规划 1.注: 本人第一篇博客,有啥不足还请多多包涵,有好的建议请指出.你以为有人读你博客,还给你提意见. 2.原题 Background: A grou ...
- 手把手教你玩转Git
文章已托管到GitHub,大家可以去GitHub查看下载!并搜索关注微信公众号 码出Offer 领取各种学习资料! 微信公众号码出Offer Git应用 一.初识Git 1.1 Git的简史 同生活中 ...