题目描述

给定在笛卡尔坐标系的单位圆上的\(N\)个点(圆心为\((0, 0)\))。第\(i\)个点的坐标为\((cos(\frac{2 \pi T_i}{L}), sin(\frac{2 \pi T_i}{L}))\)。

三个不同的点将在这\(N\)个点中等概率的随机,请求出这三个点构成的三角形的内切圆圆心的\(x\)坐标的数学期望和\(y\)坐标的数学期望。

约束条件

\(3 \leq N \leq 3000\)

\(N \leq L \leq 10^9\)

\(0 \leq T_i \leq L - 1\)

\(T_i < T_{i+1}\)

所有的输入的数都是整数。

测试点时间限制:4s

测试点空间限制:1024MB

题目解答

算法一

解题过程

首先,我们考虑一种内心的刻画方法(这种刻画方法在数学竞赛中被称为"鸡爪定理")。

设\(\triangle ABC\) 的内心为\(I\),\(AI\)与\(\triangle\) \(ABC\)的外接圆交于另一点\(M\),则\(BM = CM = IM\) 。

证明:由于$ \angle BAM = \angle CAM\(,故\) \angle BCM = \angle CBM\(,所以\)BM = CM\(。又因为\)\angle IBM = \angle CBM + \angle IBC = \frac{1}{2}(\angle CAB + \angle ABC) = \angle MAB + \angle ABI = \angle BIM\(,所以\)BM = MI$

(之后看这张图的时候\(B,C\)可能需要互换一下)

这样,如果我们固定了\(B,C\)两点,以及\(A\)在\(B,C\)与圆的哪一段弧上,我们就可以得到弧\(BC\)的中点\(M\)(\(M\)与\(A\)在\(BC\)异侧)。我们不能枚举\(A\)点,但是我们将\(I\)刻画为:\(M + (B - M) \cdot e^{i \angle AMB}\)。(解释:\((I - M) = (B - M) \cdot (\cos \angle AMB + i \sin \angle AMB)\))(这里我们使用了复平面的工具),那么\(M\)是固定的,\(B - M\)是固定的(即与\(A\)无关)。要求所有\(I\)的坐标之和,只需要知道\(e^{i \angle AMB}\)的和。虽然这个式子与\(A,B\)有关,但是与\(M,C\)均无关(圆周角相等)。

因此,我们先枚举\(B\),接着逆时针顺序枚举\(C\),在枚举的过程中顺便维护

<1> 从\(B\)逆时针到\(C\)的点\(A\)的数目。

<2> 对于从\(B\)逆时针到\(C\)经过的点\(A\),维护\(e^{i \angle AMB}\)的和(这个和与\(M\)的位置是无关的)。

如果我们固定了\(B,C\)的话,以及\(A\)在\(B,C\)与圆的哪一段弧上,可以算出\(M\)的值,也可以算出\(M\)对答案的贡献的次数。同时,\(B - M\)对每一个\(A\)是一样的,而\(e^{i \angle AMB}\)的和又是被维护出来的。这样,我们就可以以\(O(n^2)\)的复杂度算出内心的坐标和了。但是,每个内心被算了三次,而且我们最终答案是内心横纵坐标的期望,所以要将答案除以\(\frac{n(n - 1)(n - 2)}{2}\)

算法二

我们对称地考虑三个弧中点构成的三角形。设这三个点\(D,E,F\)对应的复数也是\(D,E,F\),则我们通过计算角度发现内心对于的复数就是\(D + E + F\)。

证明1:这个三角形的重心为\(\frac{D + E + F}{3}\),并且由欧拉线定理及比例关系容易得到垂心\(H = D + E + F\)

证明2: 只需证明\(H' = D + E + F\)时,\((H' - D)\)与\((E - F)\)垂直,而\((\vec{OE} + \vec{OF}) \cdot (\vec{OF} - \vec{OE}) = \lvert \vec{OF} \rvert ^2 - \lvert \vec{OE} \rvert ^2 = 0\),故\(D + E + F\)是\(\triangle DEF\)的垂心。

得到了这个结论过后,我们枚举两个点,以及它们对应的一段弧,计算出这段弧的中点以及不在这段弧上的点的个数,就可以得到这段弧中点的复数值在最终答案里面出现的次数,再将它们相加即可。

时间复杂度仍然为\(O(n^2)\)。

代码实现


#include <bits/stdc++.h>
using namespace std; const int N = 3005;
const double PI = acos(-1), eps = 1e-10; int n, L;
double alpha[N], ansx = 0.0, ansy = 0.0; double midpoint (double x1, double x2) {
double len = x2 - x1;
if (len < -eps) len += 2.0 * PI;
len /= 2.0;
double mid = x1 + len;
if (mid >= 2.0 * PI - eps) mid -= 2.0 * PI;
return mid;
} int main () {
scanf("%d%d", &n, &L);
for (int i = 0; i < n; i++) {
int x;
scanf("%d", &x);
alpha[i] = 2.0 * PI * x / L;
} for (int i = 0; i < n; i++) {
double nowx = 0.0, nowy = 0.0;
for (int j = (i + 1) % n, k = 0; j != i; j = (j + 1) % n, k++) {
double m = midpoint(alpha[j], alpha[i]), arg = alpha[j] - alpha[i];
double vecx = cos(alpha[i]) - cos(m), vecy = sin(alpha[i]) - sin(m); ansx += cos(m) * k, ansy += sin(m) * k;
ansx += vecx * nowx - vecy * nowy, ansy += vecx * nowy + vecy * nowx; if (arg < -eps) arg += 2.0 * PI;
nowx += cos(arg / 2.0), nowy += sin(arg / 2.0);
}
} ansx /= 0.5 * n * (n - 1) * (n - 2), ansy /= 0.5 * n * (n - 1) * (n - 2);
printf("%.10lf %.10lf", ansx, ansy);
return 0;
}

AGC039D 题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. Mysql分区、分表、分库

    1.MySQL分区 一般情况下我们创建的表对应一组存储文件,使用MyISAM存储引擎时是一个.MYI和.MYD文件,使用Innodb存储引擎时是一个.ibd和.frm(表结构)文件. 当数据量较大时( ...

  2. uboot——do_bootm

    do_bootm |----------根据参数得到 image的起始地址 |----------比较header的 magic_num 是否为 zImage | |是 | | zImage路线 | ...

  3. centos 新装的常见问题

    1.没有1080分辨率 vi /etc/X11/xorg.conf Section "Monitor" Identifier "Monitor0" Vendor ...

  4. 一:JavaWeb

    1.javaWeb技术体系 2.HTMl 超文本标记语言 (超文本的意思就是除了可以包含文字之外,还可以包含图片链接音乐视频等...) 2.1 HTML网页的组成  (结构:HTML 表现:CSS 行 ...

  5. rgw前端替换civetweb为beast

    前言 ceph的rgw现在提供了两种前端, civetweb和beast 配置 修改配置文件 rgw_frontends = civetweb port=7481 为 rgw frontends = ...

  6. 慢话crush-各种crush组合

    前言 ceph已经是一个比较成熟的开源的分布式存储了,从功能角度上来说,目前的功能基本能够覆盖大部分场景,而社区的工作基本上是在加入企业级的功能和易用性还有性能等方面在发力在,不管你是新手还是老手,都 ...

  7. istio in kubernetes (一) --原理篇

    背景 微服务是什么 • 服务之间有轻量级的通讯机制,通常为REST API • 去中心化的管理机制 • 每个服务可以使用不同的编程语言实现,使用不同的数据存储技术 • 应用按业务拆分成服务,一个大型应 ...

  8. Redis分布式锁的正确使用与实现原理

    模拟一个电商里面下单减库存的场景. 1.首先在redis里加入商品库存数量. 2.新建一个Spring Boot项目,在pom里面引入相关的依赖. <dependency> <gro ...

  9. SQL Server 不同数据间建立链接服务器进行连接查询

        在平时查询以及导数据时,经常会遇到需要使用两个数据库里数据的情况,这时就会用到在两个服务器之间建立一个链接,进行操作,脚本语句如下: 举例:例如你在测试服务器上想要查询业务库里的数据信息,此脚 ...

  10. 微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3

    题目描述: 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的中位数. 进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决 ...