题面:

传送门:https://www.luogu.org/problemnew/show/P2831


Solution

首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索。

事实上,这题搜索和状压DP都是能做的。

(因为搜索在我心中留下了阴影(斗地主),所以在这里,我讲状压DP的做法)

根据我们以往设计状压DP的经验,我们可以很轻松地设计这一题的状态:

设f[i]表示打下的猪猪的状态为i的方案数,(状态在这里用二进制方式来表示,例如:00101表示打下了第1和第3只猪)

那么有: f[i] = min(f[j])+1 (j为i的子集)

这里用到一个枚举子集的技巧,对于一个状态i,它可以这样枚举子集:

for(int j=i;j>=0;j=(j-1)&i) (至于证明,你可以在草稿纸上画画,很快就会发现它的精妙了)

那我们怎么判断能否从状态 j 转移到 i 呢?

首先,根据数学常识,我们需要3个x不一样的点才能确定一条抛物线。这题已经固定了原点了,所以我们还需要两个点来确定一条抛物线

如果j与i只有一个或两个x不同的点 是不同的,那显然是可以转移的。

对于有两个以上的点,我们可以用前两个点通过解二元一次方程来计算函数的a与b,然后再去一个一个判断每个不同的点是否在这条抛物线上。

对于如何解二元一次方程..........(这应该是数学常识吧)

复杂度O (3^n*n*T) 

显然TLE,事实上,这样做只能得60分。

那怎么优化复杂度呢?

刚刚的枚举子集显然是不可行了,那我们可以换个思路。

我们可以枚举点。

对于某一种状态,我们肯定可以枚举两个(或一个)没有用过的点去构成新的抛物线从而更新其他的状态。

这样子,我们成功地把复杂度降为了 O(2^n*n^2*T)

依然过不了,事实上,这样做能得85分。

上一个作法已经和正解很接近了。

我们可以考虑这样优化方程:

这样子,我们复杂度就降为了O(2^n*n*T)

就酱,我们就可以把这道题切掉啦(´▽`)ノ


Code

//Luogu P2831 愤怒的小鸟
//Sep,19th,2018
//状压DP
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=18+2;
const double eps=1e-7;
struct node
{
double x,y;
}nd[N];
long long f[1<<N];
int n,POW[N],g[N][N];
inline double pf(double x)
{
return x*x;
}
bool solve(node A,node B,double &a,double &b)
{
if(fabs(A.x-B.x)<=eps) return false;
a=(B.x*A.y-A.x*B.y)/(pf(A.x)*B.x-pf(B.x)*A.x);
b=(pf(B.x)*A.y-pf(A.x)*B.y)/(pf(B.x)*A.x-pf(A.x)*B.x);
if(a>=0) return false;
return true;
}
double fun(double x,double a,double b)
{
return a*pf(x)+b*x;
}
int main()
{
POW[0]=1;
for(int i=1;i<N;i++)
POW[i]=POW[i-1]*2;
int T,tt;
scanf("%d",&T);
for(;T>0;T--)
{
memset(g,0,sizeof g);
scanf("%d%d",&n,&tt);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&nd[i].x,&nd[i].y); for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
double a=0,b=0;
bool OK=solve(nd[i],nd[j],a,b);
if(OK==false) continue;
for(int k=1;k<=n;k++)
if(fabs(fun(nd[k].x,a,b)-nd[k].y)<=eps)
g[i][j]+=POW[k-1];
} memset(f,0x3f,sizeof f);
f[0]=0;
int to=(1<<n)-1,used[N];
for(int i=0;i<to;i++)
{
memset(used,0,sizeof used);
int temp=i,j;
for(j=n-1;j>=0;j--)
if(temp-POW[j]>=0)
{
temp-=POW[j];
used[j+1]=true;
}
for(j=1;j<=n;j++)
if(used[j]==false)
break;
f[i|POW[j-1]]=min(f[i|POW[j-1]],f[i]+1);
for(int k=j+1;k<=n;k++)
if(used[k]==false and g[j][k]!=0)
f[i|g[j][k]]=min(f[i|g[j][k]],f[i]+1);
} printf("%lld\n",f[to]);
}
return 0;
}

[Luogu P2831] 愤怒的小鸟 (状压DP)的更多相关文章

  1. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  2. 【题解】P2831 愤怒的小鸟 - 状压dp

    P2831愤怒的小鸟 题目描述 \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以 ...

  3. Luogu P2831 愤怒的小鸟(状压+记忆化搜索)

    P2831 愤怒的小鸟 题意 题目描述 Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于\((0,0)\)处,每次Kiana可以用它向第一象限发射 ...

  4. P2831 愤怒的小鸟 状压dp

    这个题主要是预处理比较复杂,先枚举打每只鸟用的抛物线,然后找是否有一个抛物线经过两只鸟,然后就没了. 题干: 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上 ...

  5. NOIP2016愤怒的小鸟 [状压dp]

    愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...

  6. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  7. luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)

    由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...

  8. [noip2016]愤怒的小鸟<状压dp+暴搜>

    题目链接:https://vijos.org/p/2008 现在回过头去看去年的考试题,发现都不是太难,至少每道题都有头绪了... 这道题的数据范围是18,这么小,直接暴力呗,跑个暴搜就完了,时间也就 ...

  9. NOIP2016Day2T3愤怒的小鸟(状压dp) O(2^n*n^2)再优化

    看这范围都知道是状压吧... 题目大意就不说了嘿嘿嘿 网上流传的写法复杂度大都是O(2^n*n^2),这个复杂度虽然官方数据可以过,但是在洛谷上会TLE[百度搜出来前几个博客的代码交上去都TLE了], ...

随机推荐

  1. 软件定义网络实验记录⑤--OpenFlow 协议分析和 OpenDaylight 安装

    一.实验目的 回顾 JDK 安装配置,了解 OpenDaylight 控制的安装,以及 Mininet 如何连接: 通过抓包获取 OpenFlow 协议,验证 OpenFlow 协议和版本,了解协议内 ...

  2. 利用 JS 脚本实现网页全自动秒杀抢购

    利用 JS 脚本实现网页全自动秒杀抢购 倒计时页面: 倒计时未结束时,购买按钮还不能点击. 结束时,可以点击购买,点击后出现提示"付款成功" 展示效果 1.制作测试网页 首先我们来 ...

  3. 【MySQL Errors】Table 'xxx' is marked as crashed and should be repaired 的解决方案

    现象描述 访问 Zabbix Web,出现如下错误提示: • Error in query [SELECT * FROM history_uint h WHERE h.itemid='25067' O ...

  4. 深入理解Logger日志——框架绑定原理

    深入理解Logger日志--框架绑定原理 说到Logger日志的动态绑定,主要归功与Slf4j,在之前的文章也说过,Slf4j是类似于Apache Common-Logging,英文为Simple L ...

  5. MySQL - 常用三种数据库存储引擎

    数据库存储引擎:是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建.查询.更新和删除数据.不同的存储引擎提供不同的存储机制.索引技巧.锁定水平等功能,使用不同的存储引擎,还可以获得特 ...

  6. javascript in IE

    前提:一个页面导入若干个js文件 问题: 1.如果其中一个文件出问题可能会导致下面的文件导入失败,如果导入很多外部js库文件,导致错误不好排查,可以调整好js的加载顺序,以免影响页面功能 2.IE获取 ...

  7. 在shell中截取心仪的字符串

    file=/dir1/dir2/dir3/my.file.txt ${file#*/} 去掉左边 ${file##*/} 去掉左边最后一个 ${file%/*} 去掉右边 ${file%%/*} 去掉 ...

  8. go读取键盘输入两种方式

    一种scanf var x intfmt.Println("input a int number")fmt.Scan(&x)fmt.Printf("读取到内容:% ...

  9. C# 微信access_token缓存和过期刷新

    摘自:http://blog.csdn.net/hechurui/article/details/22398849 首先建立一个Access_token类 /// <summary> // ...

  10. Ubuntu20.4安装

    官网下载镜像 https://releases.ubuntu.com/20.04/ubuntu-20.04-live-server-amd64.iso 挂载开装 选语言 选键盘 网络设置DHCP到地址 ...