BZOJ1001 狼抓兔子(网络流转最短路:对偶图)
题意:
给一个如图形式的\(n*m\)的方格,从左上走到右下,给出边权,问分成两块所需的最小代价。\(n,m\leq1000\)。
思路:
显然是个最小割,但是\(O(n^2m)\)的复杂度很高,虽然这道题能过。
这里介绍一种最大流改最短路的方法——对偶图。
对任意一个图我们可以变成对偶图:
如下图,每一个闭合的平面我们都给他标号,然后连接源点和汇点,把外面那个无穷大的平面分成两个平面\(s,t\)。然后开始新建边。新建边的每一条边为:把一条原来边的左右两个平面连接到一起,权值为原来的边的权值。可以得出最后的新建的边的数量和原来一样。最后跑\(s,t\)的最短路即可得出原图的最大流。
代码:
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <ctime>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn = 3e6 + 5;
const int MAXM = 3e6;
const ll MOD = 1e9 + 7;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
struct Edge{
int to, next;
int w;
}edge[MAXM * 2];
struct qnode{
int u;
int c;
qnode(int _u = 0, int _c = 0):u(_u), c(_c){}
bool operator < (const qnode &r) const{
return r.c < c;
}
};
int tot, head[maxn], vis[maxn];
int dis[maxn];
void addEdge(int u, int v, int w){
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
}
void Dijkstra(int n, int st){
memset(vis, 0, sizeof(vis));
for(int i = 0; i <= n; i++) dis[i] = INF;
priority_queue<qnode> que;
while(!que.empty()) que.pop();
dis[st] = 0;
que.push(qnode(st, 0));
qnode temp;
while(!que.empty()){
temp = que.top();
que.pop();
int u = temp.u;
if(vis[u]) continue;
vis[u] = 1;
for(int i = head[u]; i != -1; i = edge[i].next){
int v = edge[i].to;
int w = edge[i].w;
if(!vis[v] && dis[v] > dis[u] + w){
dis[v] = dis[u] + w;
que.push(qnode(v, dis[v]));
}
}
}
}
int n, m;
int getupid(int x, int y){
return (x - 1) * (m - 1) + y;
}
int getdownid(int x, int y){
return (x - 1) * (m - 1) + y + (n - 1) * (m - 1);
}
int main(){
memset(head, -1, sizeof(head));
tot = 0;
scanf("%d%d", &n, &m);
if(n == 1 || m == 1){
int ans = INF;
if(n == m) ans = 0;
if(n < m) swap(n, m);
for(int i = 1; i <= n - 1; i++){
int w;
scanf("%d", &w);
ans = min(ans, w);
}
printf("%d\n", ans);
return 0;
}
int st = 0, en = (n - 1) * (m - 1) * 2 + 1;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m - 1; j++){
int w;
scanf("%d", &w);
if(i == 1){
addEdge(st, getupid(i, j), w);
addEdge(getupid(i, j), st, w);
}
else if(i == n){
addEdge(en, getdownid(i - 1, j), w);
addEdge(getdownid(i - 1, j), en, w);
}
else{
addEdge(getupid(i, j), getdownid(i - 1, j), w);
addEdge(getdownid(i - 1, j), getupid(i, j), w);
}
}
}
for(int i = 1; i <= n - 1; i++){
for(int j = 1; j <= m; j++){
int w;
scanf("%d", &w);
if(j == 1){
addEdge(getdownid(i, j), en, w);
addEdge(en, getdownid(i, j), w);
}
else if(j == m){
addEdge(getupid(i, j - 1), st, w);
addEdge(st, getupid(i, j - 1), w);
}
else{
addEdge(getdownid(i, j), getupid(i, j - 1), w);
addEdge(getupid(i, j - 1), getdownid(i, j), w);
}
}
}
for(int i = 1; i <= n - 1; i++){
for(int j = 1; j <= m - 1; j++){
int w;
scanf("%d", &w);
addEdge(getupid(i, j), getdownid(i, j), w);
addEdge(getdownid(i, j), getupid(i, j), w);
}
}
Dijkstra(en, st);
printf("%d\n", dis[en]);
return 0;
}
BZOJ1001 狼抓兔子(网络流转最短路:对偶图)的更多相关文章
- [bzoj1001][BJOI2006]狼抓兔子——最大流转最短路,平面图
题目描述: 给定一个平面图,求最小割. 题解: 本题是一道经典题. 周冬Orz的论文是很好的研究资料. 这道题点太多,所以直接跑dinic无疑会超时. 我们观察原图,发现原图是一个平面图. 什么是平面 ...
- bzoj1001狼抓兔子 对偶图优化
bzoj1001狼抓兔子 对偶图优化 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路 菜鸡总是要填坑的! 很明显让你求网格图的最 ...
- BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...
- bzoj1001狼抓兔子
1001: [BeiJing2006]狼抓兔子 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你 ...
- BZOJ1001:狼抓兔子(最小割最大流+vector模板)
1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...
- 【BZOJ】1001: [BeiJing2006]狼抓兔子 Dinic算法求解平面图对偶图-最小割
1001: [BeiJing2006]狼抓兔子 Description 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下 三种类型的道路 1:(x,y)<==>( ...
- BZOJ_2001_[BeiJing2006]狼抓兔子_最小割转对偶图
BZOJ_2001_[BeiJing2006]狼抓兔子 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 分析:思路同NOI2010海拔. ...
- 【建图+最短路】Bzoj1001 狼抓兔子
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...
- BZOJ1001 狼抓兔子(裸网络流)
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
- BZOJ1001 狼抓兔子 平面图转对偶图 最小割
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为 ...
随机推荐
- commons-lang3相关类实例
一.ArrayUtils //1.判断两个数组长度是否相等 ArrayUtils.isSameLength(new int[] {1,2,3,4}, new int[] {1,2,3,4});//tr ...
- 微信小程序腾讯地图SDK使用方法
一.本篇文章主要知识点有以下几种: 1.授权当前位置 2.map组件的使用 3.腾讯地图逆地址解析 4.坐标系的转化 二.效果如下: 三.WXML代码 <map id="map&quo ...
- uni-app开发经验分享十四:小程序超过2M限制的方法——分包加载
起初小程序上线时,微信限制了代码包不能超过1MB,后来功能变大变成了2M了,限制大小是出于对小程序启动速度的考虑,希望用户在使用任何一款小程序时,都能获得一种"秒开"体验.但是 ...
- Bitter.Core系列八:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore 之 事务
Bitter.Core 编写事务相当简单,Bitter.Core 尽可能的将代码编写量降为最低,例外一方方面保证客户主观能控制代码.Bitter.Core 事务提交,支持Builkcopy事务,原生事 ...
- using-pointers-to-remove-item-from-singly-linked-list
https://stackoverflow.com/questions/12914917/using-pointers-to-remove-item-from-singly-linked-list
- 洛谷P3413 P6754
双倍经验题 由于我先做的 P6754,所以一切思路基于 P6754 的题目 " P6754 这题就是 P3413 的究极弱化版 " --By Aliemo. P6754 Descr ...
- (三)SpringBoot停止服务的方法
SpringBoot停止服务的方法 第一种:actuator 第二种:context 第三种:进程号 第四种:SpringApplication.exit() 第五种:自定义Controller Sp ...
- 使用Docker部署监控系统,Prometheus,Grafana,监控服务器信息及Mysql
使用Docker部署监控系统,Prometheus,Grafana,监控服务器信息及Mysql 一.docker部署prometheus监控系统 1.1 配置安装环境 1.1.1 安装promethe ...
- Tomcat优化,JNDI,连接池,数据源
什么是JNDI? JNDI的简单应用 什么是连接池技术? 连接池 性能 连接池技术与传统数据库连接的比较 连接池技术工作原理 为什么使用连接池? 传统数据库连接方式的不足 企业级开发需要稳健和高效的数 ...
- Spring5源码,@ModelAttribute
一.什么是@ModelAttribute注解 二.@ModelAttribute注解相关代码详解 一.什么是@ModelAttribute注解 @ModelAttribute注解主要用来将请求转换为使 ...