hdu4801 PocketCube 2阶魔方
http://acm.hdu.edu.cn/showproblem.php?pid=4801
1. 题目描述
给定一个2×2×22×2×2的魔方,当某个面上的4个小块颜色均相同时,称这个面为complete。求对这个魔方进行n∈[1,7]n∈[1,7]次旋转(沿某个面顺时针或者逆时针)的过程中,求complete的面总和的最大值。魔方及索引如下图所示:
我一直以为魔方只有8种操作
上图再加上反方向的就是8种
但其实下面的往右转和上面的往左转是一样的。。。
并且还忽略了红线的操作
那其实我们可以这么考虑,以每个面为平面旋转,有逆时针和顺时针两种
六个面,6*2=12种操作,然后,我们考虑相对的两个面
我们发现
从中间切开的这两个面,比如说上下,其实这两个操作是一种操作
因此12/2=6
一共只有6种操作,这个题目最多转7次,那么一共有6^7=279936这么多状态
挺少的所以我们可以直接DFS爆搜
并且一个显然的剪枝是,如果上一次对某一个面逆时针,那么这次对这个面顺时针就没有必要了,这相当于还原
代码常量较多,不好调试,需要对照立体图和展开图写出对应的排列关系
(旋转某个面时,该面上的排列也会放生变化
1 #include <stdio.h>
2 #include <algorithm>
3
4 using namespace std;
5 int f[6][4]={{0,1,2,3},{4,5,10,11},{6,7,12,13},{8,9,14,15},{16,17,18,19},{20,21,22,23}};
6 int sour[]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23};
7 int left0[]={2,0,3,1,6,7,8,9,23,22,10,11,12,13,14,15,16,17,18,19,20,21,5,4};
8 int right0[]={1,3,0,2,23,22,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,9,8};
9 int left1[]={20,1,22,3,10,4,0,7,8,9,11,5,2,13,14,15,6,17,12,19,16,21,18,23};
10 int right1[]={6,1,12,3,5,11,16,7,8,9,4,10,18,13,14,15,20,17,22,19,0,21,2,23};
11 int left2[]={0,1,8,14,4,3,7,13,17,9,10,2,6,12,16,15,5,11,18,19,20,21,22,23};
12 int right2[]={0,1,11,5,4,16,12,6,2,9,10,17,13,7,3,15,14,8,18,19,20,21,22,23};//err
13 int temp[24],cube[24],ans,n;
14 void L0(){
15 for(int i=0;i<24;++i) temp[i]=cube[left0[i]];
16 for(int i=0;i<24;++i) cube[i]=temp[i];
17 }
18 void R0(){
19 for(int i=0;i<24;++i) temp[i]=cube[right0[i]];
20 for(int i=0;i<24;++i) cube[i]=temp[i];
21 }
22 void L1(){
23 for(int i=0;i<24;++i) temp[i]=cube[left1[i]];
24 for(int i=0;i<24;++i) cube[i]=temp[i];
25 }
26 void R1(){
27 for(int i=0;i<24;++i) temp[i]=cube[right1[i]];
28 for(int i=0;i<24;++i) cube[i]=temp[i];
29 }
30 void L2(){
31 for(int i=0;i<24;++i) temp[i]=cube[left2[i]];
32 for(int i=0;i<24;++i) cube[i]=temp[i];
33 }
34 void R2(){
35 for(int i=0;i<24;++i) temp[i]=cube[right2[i]];
36 for(int i=0;i<24;++i) cube[i]=temp[i];
37 }
38 int _cpf(int cube[]){
39 int ans=0;
40 for(int i=0;i<6;++i){
41 if(cube[f[i][0]]==cube[f[i][1]]&&cube[f[i][1]]==cube[f[i][2]]&&cube[f[i][2]]==cube[f[i][3]]) ans++;
42 }
43 return ans;
44 }
45 void dfs(int step,int k){
46 ans=max(ans,_cpf(cube));
47 if(step>=n) return ;
48 int tmp[24];
49 for(int i=0;i<24;++i) tmp[i]=cube[i];
50 if(k!=1){
51 L0();dfs(step+1,0);ans=max(ans,_cpf(cube));
52 for(int i=0;i<24;++i) cube[i]=tmp[i];
53 }
54 if(k!=0){
55 R0();dfs(step+1,1);ans=max(ans,_cpf(cube));
56 for(int i=0;i<24;++i) cube[i]=tmp[i];
57 }
58 if(k!=3){
59 L1();dfs(step+1,2);ans=max(ans,_cpf(cube));
60 for(int i=0;i<24;++i) cube[i]=tmp[i];
61 }
62 if(k!=2){
63 R1();dfs(step+1,3);ans=max(ans,_cpf(cube));
64 for(int i=0;i<24;++i) cube[i]=tmp[i];
65 }
66 if(k!=5){
67 L2();dfs(step+1,4);ans=max(ans,_cpf(cube));
68 for(int i=0;i<24;++i) cube[i]=tmp[i];
69 }
70 if(k!=4){
71 R2();dfs(step+1,5);ans=max(ans,_cpf(cube));
72 for(int i=0;i<24;++i) cube[i]=tmp[i];
73 }
74 }
75 int main(){
76 while(~scanf("%d",&n)){
77 for(int i=0;i<24;++i){
78 scanf("%d",cube+i);
79 }
80 ans=0;
81 dfs(0,-1);
82 printf("%d\n",ans);
83 }
84 return 0;
85 }
hdu4801 PocketCube 2阶魔方的更多相关文章
- 任意阶魔方阵(幻方)的算法及C语言实现
写于2012.10: 本来这是谭浩强那本<C程序设计(第四版)>的一道课后习题,刚开始做得时候去网上找最优的算法,结果发现奇数和双偶数(4的倍数)的情况下算法都比较简单,但是单偶数(2的倍 ...
- 【C++小白成长撸】--(续)单偶数N阶魔方矩阵
1 /*程序的版权和版本声明部分: **Copyright(c) 2016,电子科技大学本科生 **All rights reserved. **文件名:单偶数N阶魔方矩阵 **程序作用:单偶数N阶魔 ...
- n阶魔方阵(奇数阵)的输出
需求 要求输出1~n²的自然数构成的魔方阵. STEP 1 什么是魔方阵? 魔方阵,古代又称“纵横图”,是指组成元素为自然数1.2…n2的平方的n×n的方阵,其中每个元素值都不相等,且每行.每列以及主 ...
- HDU 1998 奇数阶魔方【模拟填数/注意边界和细节】
奇数阶魔方 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- 算法:九宫格问题--奇数阶魔方(Magic-Square)
一.魔方介绍 魔方(这里是简称,也可以叫幻方.魔术矩阵,Magic Square)是 n×n 正方形网格(n 为每侧的单元数),里面每个单元格填充了不同的正整数 1, 2, 3, ... , n2,并 ...
- 杭电ACM 1998奇数阶魔方
#include<stdio.h>#include <string.h>int main(){ int n,m; int a[40][40]={0}; scanf(" ...
- hdoj 2183 奇数阶魔方(II) 【模拟】+【法】
比赛的时候花了一个多小时,以做不做 分析:可观察:中间是(n*n+1)/2, 中间的上面是n*n,以下是1, 左边是n,右面是(n*n+1)-n,并且正对角线是最左上对到最右下端添加(+1).另外一条 ...
- hdu 1998 奇数阶魔方(找规律+模拟)
应该不算太水吧. 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 ...
- 【ACM】魔方十一题
0. 前言打了两年的百度之星,都没进决赛.我最大的感受就是还是太弱,总结起来就是:人弱就要多做题,人傻就要多做题.题目还是按照分类做可能效果比较好,因此,就有了做几个系列的计划.这是系列中的第一个,解 ...
随机推荐
- 入门OJ:郭嘉的消息传递
题目描述 我们的郭嘉大大在曹操这过得逍遥自在,但是有一天曹操给了他一个任务,在建邺城内有N(<=1000)个袁绍的奸细 将他们从1到N进行编号,同时他们之间存在一种传递关系,即若C[i,j]=1 ...
- pyinstaller打包shotgun有关的程序
By 鬼猫猫 http://www.cnblogs.com/muyr/ 背景 使用pyinstaller打包跟shotgun有关的程序后,在自己电脑上运行都OK,但是编译好的exe在其他人的电脑上运行 ...
- 我们都可以把它放 Sidecar 容器中,这样微服务具备了 Super power,一种超能力
云原生时代,微服务如何演进? 原创 李响 阿里技术 2020-08-28 https://mp.weixin.qq.com/s/KQG2U8_aotDL4YFB8ee6Zw 一 微服务架构与云原 ...
- https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/ReferenceError
https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/ReferenceError
- loj2587铁人两项
无向图,图中选出定点三元组(a,b,c),a->b->c的路径没有重复边.问方案有多少? -------------------------------------------- 首先求出 ...
- HTTP1.0/1.1/2.0
https://www.cnblogs.com/heluan/p/8620312.html http缓存策略 https://www.cnblogs.com/Iwillknow/archive/201 ...
- 3. Linux常用系统状态检测命令
1.ifconfig :于获取网卡配置与网络状态等信息,如网卡名称.IP.MAC等 2.uname -a :完整地查看当前系统的内核名称.主机名.内核发行版本.节点名.系统时间.硬件名称.硬件平台.处 ...
- 小心 Enum Parse 中的坑
小心 Enum Parse 中的坑 Intro 最近使用枚举的时候,踩了一个小坑,分享一下,主要是枚举从 int 值转成枚举时可能会遇到 Sample 来看下面的示例: 首先定义一个枚举: publi ...
- LCA算法——倍增
概况 LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 实现过程 预处理:通过dfs遍历,记录每个节点到根节点的距离dis ...
- 2019牛客暑期多校训练营(第七场)F-Energy stones(思维+树状数组)
>传送门< 题意:有n块能量石,每秒钟会增加Li的能量,但是一旦增长到了Ci它就不会增长了,它初始的能量为Ei. 现在有若干个时刻ti,会选择下标在[Si,Ti]的能量石吸取它们的能量,这 ...