dp - 斜率优化笔记
(原来的题解没得了,只好重写一份)
斜率优化一般是,\(dp\) 是枚举一个 \(i\),然后前面找一个 \(j\),式子中有些和 \(j\) 有关,有些和 \(i\) 有关,有些和俩都有关。
过程中,我们维护一个单调队列,它们可能作为最优的转移位置。其中队首是最优的,其它的是 可能 成为最优的(现在不是,可能以后)
核心步骤:把每个决策转化成平面直角坐标系上的点,然后从几何的角度考虑哪些点可能是最优的,哪些不可能。
我们发现这个性质好像很妙。所以说,不是所有题都可以斜率优化的。
这些说的肯定非常迷惑,看个实际的
示例
最经典的入门题 HNOI2008玩具装箱
转移方程为 \(f_i=min(f_j+(s_i-s_j+i-j-L-1)^2)\),非常 simple
我们令和 \(i\) 有关的为 \(a_i=s_i+i\),和 \(j\) 有关的为 \(b_j=s_j+j+L+1\)
那 \(f_i=min(f_j+(a_i-b_j)^2)\)
拆开 \(f_i=min(f_j+a_i^2-2a_ib_j+b_j^2)\)
假设 \(j\) 是最优的那个转移,那
\(f_i=f_j+a_i^2-2a_ib_j+b_j^2\)
这个式子里面,注意到 \(2a_ib_j\) 这一项是同时与俩有关的。
主体思想
我们把和 \(i\) 有关的那个 \(2a_i\) 看成斜率,和 \(j\) 有关的 \(b_j\) 看成 \(x\)。那 \(y\) 肯定也要和 \(j\) 有关,移到右边。我们的主体思想是把 \(f_i\) 变成一个截距。所以把 \(f_i\) 和一些只和 \(i\) 有关的东西放到左边。
(这一步就体现出“斜率”了)
变成 \(2a_ib_j+f_i-a_i^2=b_j^2+f_j\)。其中 \(x=b_j\),\(y=b_j^2+f_j\)。
令 \(P_j\) 作为第 \(j\) 个决策点,坐标为 \((b_j,b_j^2+f_j)\)。
那现在问题转化成了:找到一个 \(j<i\),使得过点 \(P_j\) 的斜率为 \(2a_i\)(定值)的直线的截距加上 \(a_i^2\)(定值)最小。
手画几张图可以得出以下结论:
- 如果队首的斜率 \(<2a_i\),那这一次转移队首就比队首的下一个要劣(画图发现);而且 \(a_i\) 是单增的,那以后肯定都劣,直接弹队首
- 斜率应该是单调递增的 (这个要手画了)。所以如果新来的和原队尾组成的斜率,小于原队尾和原队尾上一个的斜率,那这个队尾就废了
然后就维护一个单调队列就完事了。复杂度是 \(O(n)\) 的,\(log\) 都不带。
dp - 斜率优化笔记的更多相关文章
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- 学渣乱搞系列之dp斜率优化
学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- dp斜率优化
算法-dp斜率优化 前置知识: 凸包 斜率优化很玄学,凭空讲怎么也讲不好,所以放例题. [APIO2014]序列分割 [APIO2014]序列分割 给你一个长度为 \(n\) 的序列 \(a_1,a_ ...
随机推荐
- springMVC搭建分布式框架
https://www.cnblogs.com/lr393993507/p/7652717.html https://www.cnblogs.com/Tpf386/p/10987931.html
- JSP 的 4 种作用域?
page:代表与一个页面相关的对象和属性. request:代表与客户端发出的一个请求相关的对象和属性.一个请求可能跨越多个页面,涉及多个 Web 组件:需要在页面显示的临时数据可以置于此作用域. s ...
- java 深拷贝与浅拷贝机制详解
概要: 在Java中,拷贝分为深拷贝和浅拷贝两种.java在公共超类Object中实现了一种叫做clone的方法,这种方法clone出来的新对象为浅拷贝,而通过自己定义的clone方法为深拷贝. (一 ...
- JAVA基础之this关键之理解
突然觉得有几个知识点需要先复习一下 1.引用和对象并不一定要同时存在,可以只有引用,没有对象 :比如声明String a;如果非得提供一个比喻,可以用电视遥控器和电视来做比喻,遥控器比喻引用,电视 ...
- Above the Median
http://www.forioi.com/p/3212 农夫约翰把他的N(1<=N<=1e5)奶牛排在一排来衡量他们的高度,牛i有:高度H_I(1<=H_I<=1e9)纳米– ...
- springboot项目父依赖管理
springboot项目,pom文件中,要引用父pom文件,进而使用其依赖关系 例如: <parent> <groupId>org.springframework.boot&l ...
- 计算-服务器最大并发量-http协议请求-以webSphere服务器为例-考虑线程池
请求的处理流程 广域网上有大量的并发用户同时访问Web服务器,Web服务器传递请求给应用服务器(Web容器),Web容器传递请求给EJB容器,然后EJB容器发送数据库连接请求给数据库. 请求的处理流程 ...
- Phoenix-4.14-cdh5.14.2与hbase-1.2.0-cdh5.14.2集成测试
Phoenix介绍: 针对hbase开发的第三方插件,目前已贡献给Apache,顶级项目 Phoenix是构建在HBase上的一个SQL层 可以使用类似于操作mysql的标准sql语句,作为h ...
- 计算机考研复试真题 N阶楼梯上楼问题
题目描述 N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入描述: 输入包括一个整数N,(1<=N<90). 输出描述: 可能有多组测试数据,对于每组数据 ...
- 二 prometheus 监控 Redis
Prometheus 监控Redis需要用到redis_exporter客户端, Prometheus -> redis_exporter这个模式, 类似监控Mysql 一个思路. 1 ) 设置 ...