LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形
原题
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height =
[2,1,5,6,2,3]
.The largest rectangle is shown in the shaded area, which has area =
10
unit.
示例
Given heights =
[2,1,5,6,2,3]
,
return10
.
解题思路
第一阶段:
拿到这种题,首先想怎么用最暴力的方法解决这个问题,于是自然而然的想出来枚举的方法,即利用二重循环枚举所有可能的区间,接着再这区间中找出最小的值,然后用(最小值 * 区间宽度)求出每个区间的最大值,最后从这些最大值中找出最大解。
这种解法的时间复杂度是O(n^3),一般都会超时的,那么我们就会想着降低时间复杂度,即去冗余的方法(冗余分为重复计算和不需要计算两种)
第二阶段:
那么哪里存在冗余呢?第一个想到的应该是区间内求最小值时存在重复计算,我们可以使用空间换时间的方法将之前算过的最小值存储下来,这样求最小值[i][j] 就等于MIN( 最小值[i][j-1] , j) ,这样我们就时间复杂度降低到了O(n^2)
第三阶段:
通过推演又进一步发现了冗余的地方,比方说对于[9, 8, 10, 3, 12, 11,15]来说,虽然我们枚举了所有可能的区间,计算了其区间内的最小值,但你有没有发现,其中大多数的最小值都是 3, 那么我们能不能改变思路减少该冗余呢?
于是乎我们可以采用枚举最小值的算法,即假设每一个点都是最小值,然后我们计算出其作为最小值可以向左右两边延伸的最大区间(如果该点左边的点值大于该点,则继续往左比较,知道某点比该点值小为止)
最后可以算出每一个点作为最小值所包括的最大面积。面积 = n点高度 * (n右边界 - n左边界 + 1 )
第四阶段:
上一阶段的时间复杂度似乎并没有减少,那么肯定这种新思路引来了新的冗余,这种冗余在哪里呢?
我们发现在找一个点的左右最大区间时存在重复计算,因为如果n点比n - 1点的值大的话,那么n点左边界应该大于等于n - 1点的左边界,于是乎我们可以存储下每个点的左右边界,避免很多重复计算
最终思路:
- 枚举所有点,将其作为最小值
- 记录每个点的左右边界(计算n点左边界的方法是:判断n是否比n - 1小,如果成立则跳到n - 1 点的左边界x, 比较n是否比x小,如此循环,知道求出左边界)
- 枚举每一个点的最大面积,计算最大解
完整代码
public class Solution {
public int largestRectangleArea(int[] heights) {
int n = heights.length;
if (n == 0) {
return 0;
}
// 求左边的边界
int[] left = new int[n];
left[0] = 0;
for (int i=1;i<n;++i) {
int A = i;
while (A > 0 && heights[A - 1] >= heights[i]) {
A = left[A - 1];
}
left[i] = A;
}
// 求右边的边界
int[] right = new int[n];
right[n - 1] = n - 1;
for (int i=n-2;i>=0;--i) {
int A = i;
while (A < n - 1 && heights[A + 1] >= heights[i]) {
A = right[A + 1];
}
right[i] = A;
}
// 枚举每一个最小值的最大面积
int ans = 0;
for (int i=0;i<n;++i) {
ans = Math.max(ans, heights[i] * (right[i] - left[i] + 1));
}
return ans;
}
}
LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形的更多相关文章
- [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [leetcode]84. Largest Rectangle in Histogram直方图中的最大矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- LeetCode 84. Largest Rectangle in Histogram 单调栈应用
LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...
- 【LeetCode】84. Largest Rectangle in Histogram——直方图最大面积
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- leetCode 84.Largest Rectangle in Histogram (最大矩形直方图) 解题思路和方法
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [leetcode]84.Largest Rectangle in Histogram ,O(n)解法剖析
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [LeetCode#84]Largest Rectangle in Histogram
Problem: Given n non-negative integers representing the histogram's bar height where the width of ea ...
- 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...
- 84. Largest Rectangle in Histogram
https://www.cnblogs.com/grandyang/p/4322653.html 1.存储一个单调递增的栈 2.如果你不加一个0进去,[1]这种情况就会输出结果0,而不是1 3.单调递 ...
随机推荐
- ajax(20161110)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Spring Data JPA 简单查询--接口方法
一.接口方法整理速查 下表针对于简单查询,即JpaRepository接口(继承了CrudRepository接口.PagingAndSortingRepository接口)中的可访问方法进行整理.( ...
- Web API框架学习——路由(一)
HttpConfiguration(ASP.NET Web API管道的配置是通过HttpConfiguration来完成) : 包括路由注册在内的对整个ASP.NET Web API管道的配置是通过 ...
- 关于mui选择器的使用
使用mui引入选择器的picker.js.poppicker.js.及他们的css文件之后引入代码与点击确定之后的状态: document.querySelector('#osex').addEven ...
- Unity 3D Framework Designing(4)——设计可复用的SubView和SubViewModel(Part 2)
在我们设计和开发应用程序时,经常要用到控件.比如开发一个客户端WinForm应用程序时,微软就为我们提供了若干控件,这些控件为我们提供了可被定制的属性和事件.属性可以更改它的外观,比如背景色,标题等, ...
- 老司机带路——15个Android撸代码常见的坑
老司机为何能够成为老司机,不是因为开车开得多,而是撸多了… 0x00 使用 startActivityForResult 后在 onActivityResult 中没有正确回调到 Activity.R ...
- 在腾讯云上部署Hexo博客
推荐理由 ----搭建个人的空间博客目前深受个人开发者的追捧,然而博客的种类和平台有很多,Hexo是一个开源的静态博客生成器.相比于其他博客而言它只要是web容器就能用.除了闷头专研技术之外,程序员还 ...
- IOS开发创建开发证书及发布App应用(五)——编译应用
5.编译应用 最近升级ios7,一直没有时间写,终于搞完了,完成之前没有完成的工作 由于适配ios7,所以Xcode也升级到5了,所以下面截图基本在Xcode5上,以前的版本基本也差不多的 打开项目的 ...
- Zabbix3.0部署最佳实践
Zabbix3整个web界面做了一个全新的设计. 更多新特性请点击当前字幕查看 笔者QQ:572891887 Linux架构交流群:471443208 1.1Zabbix环境准备 [root@li ...
- Struts2之i18N国际化
对于i18n其实没有太多内容,一般的公司用不到这些内容,除非是跨国公司,但即便是跨国公司也不一定会使用i18n来进行国际化处理,所以本篇内容仅供大家了解,不做深入的探讨,希望通过本篇内容,可以帮助大家 ...