Learning to Rank简介
Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mining等领域有着很多应用。
1. 排序问题
如图 Fig.1 所示,在信息检索中,给定一个query,搜索引擎会召回一系列相关的Documents(通过term匹配,keyword匹配,或者semantic匹配的方法),然后便需要对这些召回的Documents进行排序,最后将Top N的Documents输出。而排序问题就是使用一个模型 f(q,d)来对该query下的documents进行排序,这个模型可以是人工设定一些参数的模型,也可以是用机器学习算法自动训练出来的模型。现在第二种方法越来越流行,尤其在Web Search领域,因为在Web Search 中,有很多信息可以用来确定query-doc pair的相关性,而另一方面,由于大量的搜索日志的存在,可以将用户的点击行为日志作为training data,使得通过机器学习自动得到排序模型成为可能。
需要注意的是,排序问题最关注的是各个Documents之间的相对顺序关系,而不是各个Documents的预测分最准确。
Learning to Rank是监督学习方法,所以会分为training阶段和testing阶段,如图 Fig.2 所示。
1.1 Training data的生成
对于Learning to Rank,training data是必须的,而feature vector通常都是可以得到的,关键就在于label的获取,而这个label实际上反映了query-doc pair的真实相关程度。通常我们有两种方式可以进行label的获取:
第一种方式是人工标注,这种方法被各大搜索引擎公司广为应用。人工标注即对抽样出来作为training data的query-doc pair人为地进行相关程度的判断和标注。一般标注的相关程度分为5档:perfect,excellent,good,fair,bad。例如,query=“Microsoft”,这时候,Microsoft的官网是perfect;介绍Microsoft的wikipedia则是excellent;一篇将Microsoft作为其主要话题的网页则是good;一篇只是提到了Microsoft这个词的网页则是fair,而一篇跟Microsoft毫不相关的网页则是bad。人工标注的方法可以通过多人同时进行,最后以类似投票表决的方式决定一个query-doc pair的相关程度,这样可以相对减少各个人的观点不同带来的误差。
第二种方式是通过搜索日志获取。搜索日志记录了人们在实际生活中的搜索行为和相应的点击行为,点击行为实际上隐含了query-doc pair的相关性,所以可以被用来作为query-doc pair的相关程度的判断。一种最简单的方法就是利用同一个query下,不同doc的点击数的多少来作为它们相关程度的大小。
不过需要注意的是,这里存在着一个很大的陷阱,就是用户的点击行为实际上是存在“position bias”的,即用户偏向于点击位置靠前的doc,即便这个doc并不相关或者相关性不高。有很多 tricky的和 general 的方法可以用来去除这个“position bias”,例如,
1. 当位置靠后的doc的点击数都比位置靠前的doc的点击数要高了,那么靠后的doc的相关性肯定要比靠前的doc的相关性大。
2. Joachims等人则提出了一系列去除bias的方法,例如 Click > Skip Above, Last Click > Skip Above, Click > Earlier Click, Click > Skip Previous, Click > No Click Next等。
3. 有个很tricky但是效果很不错的方法,之前我们说一个doc的点击数比另一个doc的点击数多,并不一定说明前者比后者更相关。但如果两者的差距大到一定程度了,即使前者比后者位置靠前,但是两者的点击数相差5-10倍,这时候我们还是愿意相信前者更加相关。当然这个差距的大小需要根据每个场景具体的调整。
4. position bias 存在的原因是,永远无法保证在一次搜索行为中,用户能够看到所有的结果,往往只看到前几位的结果。这时候就到了 Click Model大显身手的时候了,一系列的 Click Model 根据用户的点击信息对用户真正看到的doc进行“筛选”,进而能更准确地看出用户到底看到了哪些doc,没有看到哪些doc,一旦这些信息知道了,那么我们就可以根据相对更准确的 点击数/展示数(即展现CTR)来确定各个doc的相关性大小。
上述讲到的两种label获取方法各有利弊。人工标注受限于标注的人的观点,不同的人有不同的看法,而且毕竟标注的人不是真实搜索该query的用户,无法得知其搜索时候的真实意图;另一方面人工标注的方法代价较高且非常耗时。而从搜索日志中获取的方法则受限于用户点击行为的噪声,这在长尾query中更是如此,且有用户点击的query毕竟只是总体query的一个子集,无法获取全部的query下doc的label。
1.2 Feature的生成
这里只是简单介绍下,后续博客会有更纤细的讲解。
一般Learning to Rank的模型的feature分为两大类:relevance 和 importance(hotness),即query-doc pair 的相关性feature,和doc本身的热门程度的feature。两者中具有代表性的分别是 BM25 和 PageRank。
1.3 Evaluation
怎么判断一个排序模型的好坏呢?我们需要有验证的方法和指标。方法简单来说就是,比较模型的输出结果,和真实结果(ground truth)之间的差异大小。用于Information Retrieval的排序衡量指标通常有:NDCG,MAP等。
NDCG(Normalized Discounted Cumulative Gain):
NDCG表示了从第1位doc到第k位doc的“归一化累积折扣信息增益值”。其基本思想是:
1) 每条结果的相关性分等级来衡量
2) 考虑结果所在的位置,位置越靠前的则重要程度越高
3) 等级高(即好结果)的结果位置越靠前则值应该越高,否则给予惩罚
其中G表示了这个doc得信息增益大小,一般与该doc的相关程度正相关:
D则表示了该doc所在排序位置的折扣大小,一般与位置负相关:
而Gmax则表示了归一化系数,是最理想情况下排序的“累积折扣信息增益值”。
最后,将每个query下的NDCG值平均后,便可以得到排序模型的总体NDCG大小。
MAP(Mean Average Precision):
其定义是求每个相关文档检索出后的准确率的平均值(即Average Precision)的算术平均值(Mean)。这里对准确率求了两次平均,因此称为Mean Average Precision。
在MAP中,对query-doc pair的相关性判断只有两档:1和0。
对于一个query,其AP值为:
yij即每个doc的label(1和0),而每个query-doc pair的P值代表了到dij这个doc所在的位置为止的precision:
其中,是dij在排序中的位置。
2. Formulation
用通用的公式来表示Learning to Rank算法,loss function为,从而risk function(loss function在X,Y联合分布下的期望值)为:
有了training data后,进一步得到empirical risk function:
于是,学习问题变成了如何最小化这个empirical risk function。而这个优化问题很难解决,因为loss function不连续。于是可以使用一个方便求解的surrogate function来替换原始loss function,转而优化这个替换函数:
替换函数的选择有很多种,根据Learning to Rank的类型不同而有不同的选择:
1)pointwise loss:例如squared loss等。
2)pairwise loss:例如hinge loss,exponential loss,logistic loss等。
3)listwise loss:
3. Learning to Rank Methods
Learning to Rank 方法可以分为三种类型:pointwise,pairwise,和listwise。
pointwise和pairwise方法将排序问题转化为classification,regression,ordinal classification等问题,优点是可以直接利用已有的classificatin和regression算法,缺点是group structure其实是被忽略的,即不会考虑每个query下所有doc之间的序关系。导致其学习目标和真实的衡量排序的目标并不一定是一致的(很多排序衡量指标,例如NDCG都是衡量每个query下的整体list的序关系的)。而listwise方法则将一个ranking list作为一个instance来进行训练,其实会考虑每个query下所有doc之间的序关系的。
这三种类型的Learning to Rank方法的具体算法一般有:
针对各个具体的算法介绍,后续的博客会进一步给出,这里就不再多加详述了。
版权声明:
本文由笨兔勿应所有,发布于http://www.cnblogs.com/bentuwuying。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。
Learning to Rank简介的更多相关文章
- 【机器学习】Learning to Rank 简介
Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...
- Learning to Rank 简介
转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩 ...
- 搜索排序-learning to Rank简介
Learning to Rank pointwise \[ L\left(f ; x_{j}, y_{j}\right)=\left(y_{j}-f\left(x_{j}\right)\right)^ ...
- [Machine Learning] Learning to rank算法简介
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...
- Learning to Rank之Ranking SVM 简介
排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...
- Learning to Rank之RankNet算法简介
排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...
- 【机器学习】Learning to Rank之Ranking SVM 简介
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...
- 芝麻HTTP: Learning to Rank概述
Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...
- Learning To Rank之LambdaMART前世今生
1. 前言 我们知道排序在非常多应用场景中属于一个非常核心的模块.最直接的应用就是搜索引擎.当用户提交一个query.搜索引擎会召回非常多文档,然后依据文档与query以及用户的相关程度对 ...
随机推荐
- R系列:关联分析;某电商平台的数据;做捆绑销售和商品关联推荐
附注:不要问我为什么写这么快,是16年写的. 一.分析目的 I用户在某电商平台买了A,那么平台接下来应该给用户推荐什么,即用户在买了商品A之后接下来买什么的倾向性最大: II应该把哪些商品在一起做捆绑 ...
- 操作符、语句、函数——Javascript高级程序设计
1.操作符 一元操作符:++.--放在变量前后的区别,+.—表示正负 位操作符:64位存储.32位计算,对NOT.AND.OR.XOR.<<.>>.>>>的掌 ...
- WPF 多语言解决方案 - Multilingual App Toolkit
1.首先安装Multilingual App Toolkit 2.新建项目,在VS中点击"工具" -> "Multilingual App Toolkit&qu ...
- How to create a repository in Github with Eclipse?
How to create a repository in Github with Eclipse? Here is an answer. I will teach you how to do it ...
- 北邮OJ
90. 字符串转换 时间限制 1000 ms 内存限制 65536 KB 题目描述 我们将仅由若干个同一小写字母构成的字符串称之为简单串,例如"aaaa"是一个简单串,而" ...
- 每一个程序员都应该知道的高并发处理技巧、创业公司如何解决高并发问题、互联网高并发问题解决思路、caoz大神多年经验总结分享
本文来源于caoz梦呓公众号高并发专辑,以图形化.松耦合的方式,对互联网高并发问题做了详细解读与分析,"技术在短期内被高估,而在长期中又被低估",而不同的场景和人员成本又导致了巨头 ...
- Java表达式中的那些坑
[1]您确定真正了解后缀表达式与前缀表达式的区别吗? public class IncrementDemo{ public static void main(String[] args) { int ...
- fmt标签格式化数字和时间
有时候需要格式化输出数字和时间,fmt 标签是个很好用的标签,下面是我做的总结: 在页面的头部加入这个标签 <%@ taglib uri="http://java.sun.com/js ...
- 关于hive ,eclipse老是提示加载不到驱动
忙活了好长时间,很纳闷为什么加载不上驱动,驱动包.hive的依赖包.hadoop的依赖包也引入了,各种百度最后: hadoop-2.2.0/share/hadoop/common/hadoop-com ...
- 分页控件AspNetPager学习笔记
1.AspNetPager简介 AspNetPager是一款开源.简单易用.可定制化等等各种优点的Web分页控件. 2.使用方法 1)下载AspNetPager.dll文件(http://www.we ...