SG 函数 S-Nim
http://poj.org/problem?id=2960
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 3464 | Accepted: 1829 |
Description
- The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
- The players take turns chosing a heap and removing a positive number of beads from it.
- The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they
recently learned an easy way to always be able to find the best move:
- Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
- If the xor-sum is 0, too bad, you will lose.
- Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
- The player that takes the last bead wins.
- After the winning player's last move the xor-sum will be 0.
- The xor-sum will change after every move.
Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S = {2, 5} each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Input
For each test case: The first line contains a number k (0 < k ≤ 100) describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps.
The last test case is followed by a 0 on a line of its own.
Output
Print a newline after each test case.
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
Sample Output
LWW
WWL
Source
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 105
#define M 10005 int s[N], sn;
int sg[M]; void getsg(int n)
{
int mk[M];
sg[] = ;//主要是让终止状态的sg为0
memset(mk, -, sizeof(mk));
for(int i = ; i < M; i++)//预处理sg函数
{
for(int j = ; j < n && s[j] <= i; j++)
mk[sg[i-s[j]]]=i;//将所有后继的sg标记为i,然后找到后继的sg没有出现过的最小正整数
//优化:注意这儿是标记成了i,刚开始标记成了1,这样每次需初始化mk memset,而标记成i就不需要了
int j = ;
while(mk[j] == i) j++;
sg[i] = j;
}
} int main()
{
while(~scanf("%d", &sn), sn)
{
for(int i = ; i < sn; i++) scanf("%d", &s[i]);
sort(s, s+sn);//排序算一个优化,求sg的时候会用到
getsg(sn);
int m;
scanf("%d", &m);
char ans[N];
for(int c = ; c < m; c++)
{
int n, tm;
scanf("%d", &n);
int res = ;
for(int i = ; i < n; i++)
{
scanf("%d", &tm);
res ^= sg[tm];
}
if(res == ) ans[c] = 'L';
else ans[c] = 'W';
}
ans[m]=;
printf("%s\n", ans);
}
return ;
}
SG 函数 S-Nim的更多相关文章
- sg函数和nim游戏的关系
sg函数和nim游戏的关系 本人萌新,文章如有错漏请多多指教-- 我在前面发了关于nim游戏的内容,也就是说给n堆个数不同的石子,每次在某个堆中取任意个数石子,不能取了就输了.问你先手是否必胜.然后只 ...
- 博弈论基础之sg函数与nim
在算法竞赛中,博弈论题目往往是以icg.通俗的说就是两人交替操作,每步都各自合法,合法性与选手无关,只与游戏有关.往往我们需要求解在某一个游戏或几个游戏中的某个状态下,先手或后手谁会胜利的问题.就比如 ...
- 【UVA11859】Division Game(SG函数,Nim游戏)
题意:给定一个n*m的矩阵,两个游戏者轮流操作. 每次可以选一行中的1个或多个大于1的整数,把它们中的每个数都变成它的某个真因子,不能操作的输. 问先手能否获胜 n,m<=50,2<=a[ ...
- Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )
题目链接 题意 : 中文题.点链接 分析 : 前置技能是 SG 函数.NIM博弈变形 每次可取石子是约数的情况下.那么就要打出 SG 函数 才可以去通过异或操作判断一个局面的胜负 打 SG 函数的时候 ...
- SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- SG函数&&SG定理
必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的 ...
- sg函数总结
http://blog.csdn.net/luomingjun12315/article/details/45555495 这一段时间写的题和我接下来要展示的一些概念都来自这里↑. 必胜点和必败点的概 ...
- (转载)--SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- SG函数略解
由于笔者太懒,懒得把原来的markdown改成MCE,所以有很多奇怪的地方请谅解. 先说nim游戏. 大意:有n堆石子,两个人轮流取,每个人每次从任意一堆取任意个,直到一个人无法取了为止.问对于石子的 ...
- 组合游戏 - SG函数和SG定理
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
随机推荐
- js实现文字逐个出现动效
效果 首先看下效果,这是在h5页面中常见的一中文字展现方式,那么是怎么实现的呢?其实很简单 思路 用一个定时器将预制的文字通过.substring(0, i)方法不断的赋给要显示的区域,i在定时器里面 ...
- Wincc flexable的IO域组态
1.题目 2.新建三个变量 3.组态画面,添加IO域1 1)常规设置 2)属性设置 4.组态IO域2 1)常规项 2)属性设置 5.组态第三个IO域 1)常规设置 2)属性设置 6.此外可以设置动画 ...
- Python 多线程进程高级指南(二)
本文是如何<优雅地实现Python通用多线程/进程并行模块>的后续.因为我发现,自认为懂了一点多线程开发的皮毛,写了那么个multi_helper的玩意儿,后来才发现我靠原来就是一坨屎.自 ...
- bzoj 4538: [Hnoi2016]网络
Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互时,数据会经过连接这两个服务器的路径上的所有服 ...
- CentOs7 systemd添加自定义系统服务
systemd: CentOS 7的服务systemctl脚本存放在:/usr/lib/systemd/,有系统(system)和用户(user)之分,即:/usr/lib/systemd/syste ...
- scrapy框架第一章
操作环境:python2.7+scrapy 安装比较简单,网上教程也超多,就不在此赘述. 示例网站:https://www.cnblogs.com/cate/python/ (爬去关于博客园所有pyt ...
- Java 向下转型
1.Java 中父类直接向子类转型的不合法的,可以编译但运行时报错. Java中子类直接向父类转型 是合法的,但转型后,可以执行的方法仅限存在于父类中的,在执行时,先看子类的是否有定义,有就执行,没有 ...
- 《Create Your own PHP Framework》笔记
前言 大力推荐该教程:<Create Your own PHP Framework> Symfony的学习蛮累的,官方文档虽然很丰富,但是组织方式像参考书而不是指南,一些不错的指导性文档常 ...
- 移动端的一些常用meta标签
<!DOCTYPE html> <!-- 使用 HTML5 doctype,不区分大小写 --> <html lang="zh-cmn-Hans"&g ...
- 如何高逼格读取Web.config中的AppSettings
http://edi.wang/post/2015/4/22/how-to-read-webconfig-appsettings-with-bigiblity 先插句题外话,下版本的ASP.NET貌似 ...